What is JPEG 2000?
- Multi-part standard published by ISO SC29/WG1
- Part 1: Base standard
- Part 2: Extensions to Part 1
- Parts 3-12: motion, compliance, wireless, security, etc.

DICOM Supplement 61: JPEG 2000 Part 1
- Final Text in January 2002
- Lossless and Lossy compression
- Progressive and embedded spatial and contrast resolution
- Progression from lossy to lossless reconstruction
- Regions of interest
What is JPIP?

- JPEG2000 Interactive Protocol (JPIP)
 - Part 9 of the JPEG2000 standard
 - Designated by ISO/IEC 15444-9
 - “Interactivity Tools, APIs and Protocols”

- The blueprint for the best usage of JPEG2000 functionality in a distributed application environment

- Framework for efficient communication between a client and a server
 - Partial or whole image codestreams
 - Metadata exchange
JPIP Features

- Defines a client server protocol for exchanging
 - Partial or whole JPEG2000 images
 - Metadata or other image information

- Image data is exchanged by:
 - Client making a request for a specific region of the image at a particular resolution, quality, etc.
 - Server replies by sending either:
 - Full images
 - Tiles
 - Incremental JPEG2000 data (precincts)
Why is JPIP Useful?

- It provides standard-based image streaming for medical systems

- Can provide interoperability between standard-compliant systems from different vendors

- Standards based systems are
 - Less expensive
 - Easier to maintain
 - Promote data sharing and system level data exchange
How Best To Support The Complex Codestream?

- Can be layered on HTTP, HTTPS or UDP
- Protocol features negotiated between the client and the server during handshake
- Image data is streamed from the server
- Image data is cached on the client
- Partial image decoding and “View Window” support
JPIP Streams

- Based on a JPIP-specific structure called “data bins”
- Two types of data bins
 - Tile: “JPT” Stream
 - Precincts: “JPP” Stream
- Tiles: A single image is treated as a collection of images
 - Each tile can be randomly accessed and decoded
- Precincts: Small rectangular sub-regions within each resolution level
 - Provides rectangular Region-of-interest decode
JPIP Requests: View-Window

WINDOW SPECS
- Window Size
- Location Offset
- Quality
- Resolution

CLIENT

SERVER

WINDOW DATA

CLIENT DISPLAY

IMAGE ON SERVER
JPIP Caching Description

- **Server-side**
 - Server has a description of client cache ("cache model")
 - Server doesn't send data already in the client cache

- **Client-side cache**
 - Storage of JPIP data bins
 - Caching is client-driven: cache status updates sent to the server
JPIP Caching Diagram

CLIENT

SERVER

This data does not need retransmission

Disk Storage:

1st Request

2nd Request
Motivation for JPIP: DICOM Use Cases

- Stack Navigation of a large CT study
 - Low resolution preview
 - Full fidelity imagery available on demand

- Large Single Image Navigation
 - Pan/Zoom region of interest at display resolution

- Thumbnail Representation for a Study
 - Sub-resolution image easily extracted

- Display by Dimension
 - Random access to individual frames of a large enhanced multiframe object
October 2004: Work started on drafting a supplement to include JPIP in DICOM

January 2005: First draft of Supplement 106 “JPIP”

March 2005: Supplement 106 approved for public comment through August 1

Comments will be addressed after the DICOM Standards Committee meeting on September 29
DICOM with JPIP: Supplement 106

- Pixel data is replaced with JPIP Image URL
 - New Transfer Syntax is defined
 - Pixel data is available from the JPIP server

- Image data is streamed via JPIP protocol

- Study and Patient data is transferred via DICOM
DICOM with JPIP: Prototype Application
Future Directions

- Combine functionalities of Supplements 105 and 106 to use JPIP to browse volumetric data
- Sub-resolution decoding in third dimension to quickly browse volumes
- Component collections to enhance performance