Enhanced Multi-frame Images
The New Core Paradigm for DICOM

Harry Solomon
Interoperability Architect, GE Healthcare
Co-chair, DICOM Standards Committee
Enhanced Multi-Frame

Why – features and benefits

Multi-Frame model
 • Functional Groups
 • Dimensions and stacks
 • Concatenations

Legacy object conversion

Summary
Why a new generation of image objects?

Imaging is moving from pixels in slices (2-D) to voxels (3-D) and beyond (n-D)

- Time, space, frequency, tensors, flow …
- New dimensions from advanced signal processing constantly evolving

Data volume is exploding

- >10,000 frame functional MR images
- Huge overhead with 1 frame/object - image headers redundancy, database insertion time, sequential acknowledgement for each transferred object
Performance – Overhead

Imagine: 10,000 images = 10,000 delays of 1 sec
~3 hours delay

1 delay only for the whole series

* Slide Courtesy: David A. Clunie
Generalize across modalities and dimensions

Many acquisition dimensions are the same in different modalities

- Spatial location, time, anatomy, cardiac phase, contrast phase …

All dimensions can be handled identically algorithmically / mathematically

- If they are defined in consistent data structures

New generation architecture standardizes data approach for all modalities and dimensions

- Simplified application logic
- Add new dimensions with minimal application change
Benefits and features

• Support for latest modality applications through modern acquisition parameters and context information

• Better multi-vendor interoperability through fewer private elements, more mandatory elements, more strict attribute rules

• Increased clinical app functionality using consistent data structures and values

• Consistent display behavior across modalities using dimension information defined by the creator

• Improved transfer performance through fewer objects
Most of all

The Enhanced Multi-frame paradigm is the basic structure used for all new multi-frame IODs

• Enhanced versions of classic IODs: CT, MR Image, MR Spectroscopy, PET, US, XA, XRF

• New IODs: 3DXR and DBT, Intravascular OCT, Ophthalmic Tomography, Pathology WSI, Segmentation
One multi-frame object often equivalent to full series
Multi-frame images have been around since DICOM 1993

- Distinct attribute for each parameter varying by frame
- Inconsistent techniques across IODs

New approach

- **Functional Groups** – Single structure for all parameters varying by frame
- **Dimension Attributes** – Describe navigation (ordering) of multi-frames
A Functional Group is a set of Data Elements that are logically related and are likely to vary together on a frame-by-frame basis.

Each Functional Group is encoded in a Sequence attribute with (usually) 1 Sequence Item.

A “mini-Module”

Examples:
• Plane Position, Plane Orientation, Cardiac Phase, MR Pulse Sequence, Table Dynamics, Frame Content
PIXEL MEASURES MACRO ATTRIBUTES

<table>
<thead>
<tr>
<th>Attribute Name</th>
<th>Tag</th>
<th>Type</th>
<th>Attribute Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pixel Measures Sequence</td>
<td>(0028,9110)</td>
<td>1</td>
<td>Identifies the physical characteristics of the pixels of this frame. Only a single item shall be included in this sequence.</td>
</tr>
<tr>
<td>>Pixel Spacing</td>
<td>(0028,0030)</td>
<td>1C</td>
<td>Physical distance in the imaging target (patient, specimen, or phantom) between the centers of each pixel, specified by a numeric pair - adjacent row spacing (delimiter) adjacent column spacing in mm. See 10.7.1.3 for further explanation of the value order. Note: In the case of CT images with an Acquisition Type (0018,9302) of CONSTANT_ANGLE, the pixel spacing is that in a plane normal to the central ray of the diverging X-Ray beam as it passes through the data collection center. Required if Volumetric Properties (0008,9206) is other than DISTORTED or SAMPLED. May be present otherwise.</td>
</tr>
<tr>
<td>>Slice Thickness</td>
<td>(0018,0050)</td>
<td>1C</td>
<td>Nominal reconstructed slice thickness (for tomographic imaging) or depth of field (for optical non-tomographic imaging), in mm. See C.7.6.16.2.3.1 for further explanation. Note: Depth of field may be an extended depth of field created by focus stacking (see C.8.12.4). Required if Volumetric Properties (0008,9206) is VOLUME or SAMPLED. May be present otherwise.</td>
</tr>
</tbody>
</table>
A Functional Group is included in one of two (but not both) Sequences:

• **Shared Functional Groups Sequence**
 Functional Groups whose elements’ values do not change through the object (same for each frame)
 This Sequence may be zero length

• **Per-Frame Functional Groups Sequence**
 Functional Groups containing elements whose value may change from one frame to another.
 Contains as many items as frames in the image.
The Frame Information Header
Dimensions and Stacks

Per-frame Functional Groups provide the discrete attributes that vary
Need to organize those attributes (and their respective frames) into sets meaningful to the user

Dimensions organize frames by some Functional Group value that varies in a consistent way

Stacks are groups of frames that have a geometric relationship (e.g., represent a particular anatomic volume); have an “In-stack Position” dimension
Example of properties that may change

- position
- orientation
- time
- cardiac phase
- volume

Solomon - Multi-frame
Special indexes to handle Stacks

Stack ID3
Frame Number 11-15
In-Stack Position
5 4 3 2 1

Stack ID2
Frame Number 6-10
In-Stack Position
5 4 3 2 1

Stack ID1
Frame Number 1-5
In-Stack Position
5 4 3 2 1
Multi-dimensional datasets

Who best knows the important data organizational indexes?

• Image object creator!
• Defines dimensions in *Dimension Module*

Must the frames be in some specific order within the object?

• No! Physical Frame order is not relevant; usage / presentation should be driven by the logical order
• Each frame has its logical position in Frame Content Functional Group *Dimension Index Values*
• Simple apps (e.g., display) simply traverse indexes
What if multi-frame image gets too big?

Image too big for file system, media, or database storage (4 GB pixels, 640 MB CD, etc.)

File size flexibility through Concatenations

If needed, the content of a multi-frame image may be split into more than one SOP Instance

These SOP instances together form a Concatenation which is a group of SOP Instances within a Series that is uniquely identified by the Concatenation UID (0020,9161)
An object may be split up into two or more SOP Instances, using the same concatenation UID.
Concatenations are logically a single multi-frame image.

In the same series
With the same dimension indexes
Uniquely identified with a Concatenation UID (0020,9161)

“Contained” image objects have the same Instance Number:

Table C.7.6.16-1
Multi-Frame Functional Groups Module attributes extract

<table>
<thead>
<tr>
<th>Instance Number</th>
<th>(0020,0013)</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A number that identifies this instance. The value shall be the same for all SOP Instances of a Concatenation, and different for each separate Concatenation and for each SOP Instance not within a Concatenation in a series.</td>
<td></td>
</tr>
</tbody>
</table>
Conversion of legacy images

Why conversion?

- Enormous archive of classic objects
- Supports the transition from classic to enhanced multi-frame environment
- Leverage most of the benefits
 - Transfer time reduction
 - Ready for advanced apps

IODs (with relaxed constraints)

- Legacy Converted Enhanced CT, MR, PET
Conversion workflow

Heterogeneous environment with conversion from single to multi-frame objects
Summary

Enhanced Multi-frame is the new core paradigm for DICOM image objects

Critical to support:

• Improved performance on large data sets
• Evolving acquisition techniques
• Advanced application architectures that support n-dimensional imaging of all modalities
Author Contacts

Harry Solomon

• harry.solomon@GE.com
• 540 W Northwest Hwy
 Barrington, IL 60010 USA

Thank you for your attention!