Practical Guide: Medical Imaging Concepts

Charles Kahn
University of Pennsylvania
Clinical workflow overview

• Physicians:
 – Elicit a story or complaint from a patient
 – Try to figure out what, if anything, is wrong
 – Figure out a treatment plan
 – Treat the patient
 – If the patient is not improving, go back to beginning
What do radiologists do?

Image humans (and animals) to:

- Diagnose diseases or anomalies
- Guide and perform procedures
- Help develop treatment plans
- Evaluate progression or regression of disease (response to treatment)
- Assist in forensic investigations
Mechanical energy – Ultrasound

Electromagnetic energy

- RF – MR imaging
- Infrared – thermal
- Visible light – endoscopy, ophthalmology, dermatology, microscopy
- Ultraviolet – fluorescence microscopy
- Gamma – radiographic imaging
- Protons – radiation therapy
A 50 year old man with cirrhosis and worsening LFTs
This is color flow and power Doppler: it shows that the blood vessels in the liver are not distorted by any “mass”.

Good news for this patient

Abdomen Ultrasound
Obstetrical Ultrasound
Why are healthcare workflows so complex?

Legacy procedures and systems
We are “idiosyncratic”
Interactions between departments
Many personnel, each with particular tasks to perform and information needed
We provide ultrasound in the operating room to assist the surgeons in locating structures and planning surgical approaches.

About 20% of the time, the ultrasound changes the surgical plan.
Intraoperative ultrasound

With permission: Susan Rowling, MD, Frank Spitz, MD
The radiologist’s view
41-year-old woman with colon carcinoma for resection of a solitary liver mass
After compression

This is NOT another metastasis!
It is a cavernous hemangioma – a benign liver lesion.
Intraoperative ultrasound

- Often resulted in delays for both surgery and radiology
- Surgeons had to wait for 20 minutes or more for us to arrive with our equipment
- For radiology, it added to patient waiting time (took a radiologist and sonographer out of the Department)
Basic workflow: Intraoperative liver
Delays

• We noted that some intraoperative ultrasound studies were subject to much greater delays than others

• We thought that one difference was whether or not the study was scheduled in advance

• We looked at the difference in workflow
Non-scheduled workflow

• Included more steps
• Each step involved time
• Once we showed how many more steps were involved, we discussed this with the surgeons and explained that scheduling ahead of time would result in shorter delays
• They now routinely schedule their studies
Intraoperative ultrasound

- An already complex workflow in radiology
- Made more complex with interaction with another department’s workflow
- Does not include the workflow steps done by surgery
Intraoperative ultrasound

• Also shows the need for standardization in the OR (hence the DICOM in Surgery WG)
• There are vendor-based standards, but they are usually proprietary
• There are standards (HDMI for video) that permit display on different devices, but not integration + interoperation
Why is workflow important?

• Much of radiology workflow grew out of the film, paper, and pencil age
• This includes not only processes, but organization
• Radiology had been largely radiology-centric
 – This in a time when “patient centered” has become a goal
Opportunities

• Our workflow tends to be supported by thick client, customized software
• Difficult transitions for legacy information systems
• Agile and adaptable
• Support changes in healthcare practice and payment
• Rapid data mining
• Increased patient involvement
• Improved communication between healthcare providers
• Demonstrating improvements in outcome
• Proving increased efficiency
With thanks to . . .

• Steven C. Horii, MD, FACR, FSIIM

• American College of Radiology