Keeping It Safe: Securing DICOM

Lawrence Tarbox, Ph.D.
Mallinckrodt Institute of Radiology
Washington University in St. Louis
Research Assistant Professor of Radiology
St. Louis, Missouri, USA

WG-5, WG-10, WG-14 (Chair),
WG-18, WG-23 (chair), WG-27
Time For A Quiz!
DICOM does not have any provisions for secure communication of images

FALSE
Traffic on the Network

TLS Protection against unauthorized listeners

DICOM Traffic

DICOM Specifies the use of TLS for encrypting traffic.
HTTP over TLS is known as HTTPS, and is the most common method of protecting Web browser traffic.
DICOM over TLS has equally strong protection against unauthorized listeners.

Protection against unauthorized network listeners by means of encryption

Slide Provided by Eric Pan, Agfa HealthCare
Identification of the other system

TLS Node Authentication uses public certificate technology to identify both endpoints.

AE-1 knows with certainty that the other endpoint is AE-3, not AE-7 or some other system.

AE-3 knows with certainty that the other endpoint is AE-1, not AE-5 or some other system.

DICOM does not specify how this authentication will then be used. Possible uses include:
- Ensuring that only internal hospital machines are allowed to connect.
- Ensuring that acquired images are sent to the correct machine.

Slide Provided by Eric Pan, Agfa HealthCare
TLS encryption makes use of public internet connections safe.

- This will need to be explained to security staff.
- DICOM over TLS is like HTTPS and should be allowed.

Node Authentication uses can be extensively customized.

- Each connection can be verified in detail, or connections just checked to ensure that they are all within facility connections.
- DICOM enables a very wide variety of authentication and access control policies.
- DICOM does not mandate any particular policies.
DICOM does not have any provisions for securely communicating user credentials

FALSE
User Credentialing

- Option 1: Trust the sender
 - Mutual TLS authentication
- Option 2: Assertions during association negotiation
 - SAML
 - Kerberos
Facilitates audit logging
Step toward cross-system authorization and access controls

- DICOM still leaves access control in the hands of the application

Query Filtering

- For productivity as well as security
Design Goals

Independent of other security mechanisms
 • No changes to other DICOM security mechanisms

Avoid incompatibility with the installed base
 • Minimum of changes to existing implementation libraries

Extensible for future credential types

Established during association negotiation
 • before any regular DIMSE transactions take place
 • Allows SCP to reject associations based on ID
Un-authenticated identity assertion
- Systems in a trusted environment
Username plus passcode
- Systems in a secure network
Kerberos-based authentication
- Strongest security
Generic SAML assertion
- Nice mix of simplicity and security
DICOM Application Entity "A"

<table>
<thead>
<tr>
<th>User ID Sub-item (58H)</th>
<th>ID Type (3)</th>
<th>User ID</th>
</tr>
</thead>
</table>

A-ASSOCIATE Request (A → B)

DICOM Application Entity "B"

<table>
<thead>
<tr>
<th>User ID Sub-item (58H)</th>
<th>Server-Response</th>
</tr>
</thead>
</table>

A-ASSOCIATE Response (A ← B)

Extended Negotiation
Response Expected
Extended Negotiation
No Response Expected

DICOM Application Entity "A"

<table>
<thead>
<tr>
<th>User ID Sub-item (58H)</th>
<th>ID Type (3)</th>
<th>User ID</th>
</tr>
</thead>
</table>

A-ASSOCIATE Request (A → B)

DICOM Application Entity "B"

(No Sub-Item)

A-ASSOCIATE Response (A ← B)
Could support any mechanism that supports uni-directional assertion mechanism (e.g. using PKI and Digital Signatures)

Does not support identity mechanisms that require bi-directional negotiation (e.g. Liberty Alliance proposals)
Several Options

User identity alone, with no other security mechanisms
User identity plus the current DICOM TLS mechanism
User identity plus future lower level transport mechanisms (e.g. IPv6 with security option)
User identity plus VPN

Practically any combination needed
DICOM does not have any provisions for guaranteeing the integrity of data.

FALSE
Embedded Security Features

Digital Signatures
• Persistent integrity check
• Identifies users or devices that handled the object, with optional secure timestamp

Selective Encryption
• Persistent privacy protection
• Hide sensitive Attributes from certain users
Digital Signatures

- Embedded in SOP Instance
- Can make secure references to unsigned objects
- Multiple signatures
 - Overlapping subsets
 - Multiple signers
 - Signatures on individual items
- Signature purposes
- Defined in profiles
DICOM does not have standardized digital watermarking of images

TRUE, but …

DICOM does not preclude its use
There is no embedded encryption defined by DICOM.

FALSE
Selective Encryption

Can encrypt all of the SOP Instance, selected attributes, or even just a single attribute

Security Profiles are used to describe the attributes that are protected

Local profiles can be used if selective encryption is wanted for special needs, e.g.,

- Only encrypt patient information, not equipment or image
- Only encrypt report contents, not patient identification

Slide Provided by Eric Pan, Agfa HealthCare
Encrypted Attributes Sequence

Item 1 (of n)
- Encrypted Content Transfer Syntax
- Encrypted Content

<table>
<thead>
<tr>
<th>Modified Attributes Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item 1 (of only 1)</td>
</tr>
<tr>
<td>Attributes to be encrypted</td>
</tr>
</tbody>
</table>

Item 2 (of n)
- Encrypted Content Transfer Syntax
- Encrypted Content

CMS envelope

Item n (of n)
- Encrypted Content Transfer Syntax
- Encrypted Content

CMS envelope
DICOM Media Security applies to all DICOM specified media, e.g., CD-R, DVD-R, E-Mail, USB Device
The media’s file system remain unencrypted, so the media can be processed and copied without special operating system driver
The individual objects are held in CMS (Cryptographic Message Syntax) envelopes inside files on the media
• CMS is often used in secure e-mail
• Optional encryption to protect against unauthorized disclosure.
• Optional integrity check to protect against tampering
DICOM itself provides no mechanisms for controlling access to data

TRUE
Securing Access to Data

• **Access Control**
 – Get permission before allowing action
 – Suitable for certain situations, e.g. restricting access to authorized medical staff

• **Audit Control**
 • Allow action without interference, trusting the judgment of the staff.
 • Monitor behavior to detect and correct errors.

• Both have a place in security systems
• Local security policies determine what is handled by access control, and what is handled by audit controls.
DICOM does not specify computer access control or other computer security measures.

- These are subject to local policy
- These are very application specific
- These are very implementation specific

DICOM does expect that the use of audit trails and activity monitoring will be part of the local security system.

DICOM defines a standard interface for reporting user and computer activity to a centralized audit repository.
The audit log messages allow the repository to record a synchronized view of all the activity on all the different systems. The actual log content is encoded as structured XML messages.

The audit repository can be used to record and monitor the entire network.

The security detection mechanisms may be as simple as flagging a login failure, or be highly complex behavior pattern recognition. DICOM enables these mechanisms. DICOM does not specify them.

Slide Provided by Eric Pan, Agfa HealthCare
Certificate Management
• Certificates are used to identify systems (and perhaps Application Entities)
• Certificates can be self-generated, facility signed, or signed by internationally recognized authorities.

Most equipment supports
• Individually provided certificates per system (self-signed or otherwise), and
• Certificates for facility authorities. Certificates signed by these authorities are recognized as authorized.

Management reference
• The SPC paper “Managing Certificates” describes this in more detail.
Firewall rules

• Firewalls may need to be configured to permit DICOM over TLS traffic (in and out).
 • The DICOM over TLS port defaults to the same port as HTTPS, but it is often changed.
 • Using a different port permits the same system to be both an HTTPS server and a DICOM over TLS system.

Audit Policies

• DICOM makes no specific recommendations on how the DICOM audit logs should be analyzed.
• The audit logs are designed to support surveillance for unauthorized activity. Other more detailed system specific logs are expected to provide forensic detail.
References

http://dicom.nema.org/

http://www.HL7.org/

http://www.IHE.net/
Lawrence Tarbox, Ph.D.

- tarboxl@mir.wustl.edu
- 510 South Kingshighway Boulevard
 St. Louis, MO 63110 USA

Thank you for your attention!