Introduction …

- Needs and demands of Radiotherapy
- Uses and benefits of DICOM in RT
- Basic RT Process
- Practice 10 years ago; today; look to the future

DICOM:
- Reduces errors
- Improves survival and quality of life
- Some clinical techniques wouldn’t be possible without it
Setting the scene ...

- It is projected that the world-wide incidence of cancer will rise from 10 million to 20 million and that the death rate will rise from 6 million to 10 million by 2020
- Around 50% of cancer therapies involve Radiotherapy
- Clinical advances in Radiotherapy planning and delivery techniques increase the survival chances and quality of life for patients
External beam radiotherapy
The clinical aim of Radiotherapy ...

- To maximise the “therapeutic index” by:
 - delivering lethal doses of radiation to cancerous cells (so increasing chances of survival), while
 - sparing normal tissue (so reducing side-effects and increasing quality of life)

- This is achieved by precisely shaping and directing the radiation beams based on information from medical images
Basically …

- Medical images (usually CT scans) lead to …
 - Defined regions (tumour, organs at risk)
Basically...

- The contoured images in turn define the optimal position of the patient and the linac (geometry)
Basically …

- The desired treatment dose leads to a schedule of treatment sessions and the dosimetric part of the plan (energy level and amount of radiation to deliver)
Basically ...

- And a treatment plan is born ...
Originally ...

- An example of planning a treatment course was to:
 - Take simulator film
 - Acquire a CT scan
 - Transfer CT images
 - Generate a treatment plan
 - Print out the plan
 - Type in the plan to the linac
 - Fit lead blocks
 - Take port films
 - Monitor doses

- This is error-prone, time-consuming and only able to transfer simple (small) amounts of data
Originally ...

- An example of planning a treatment course was to:
 - Take simulator film
 - Acquire a CT scan
 - Transfer CT images
 - Generate a treatment plan
 - Print out the plan
 - Type in the plan to the linac
 - Fit lead blocks
 - Take port films
 - Monitor doses

- This is error-prone, time-consuming and only able to transfer simple (small) amounts of data
An example of planning a treatment course was to:

- Take simulator film
- Acquire a CT scan
- Transfer CT images
- Generate a treatment plan
- Print out the plan
- Type in the plan to the linac
- Fit lead blocks
- Take port films
- Monitor doses

This is error-prone, time-consuming and only able to transfer simple (small) amounts of data
An example of planning a treatment course was to:

- Take simulator film
- Acquire a CT scan
- Transfer CT images
- Generate a treatment plan
- Print out the plan
- Type in the plan to the linac
- Fit lead blocks
- Take port films
- Monitor doses

This is error-prone, time-consuming and only able to transfer simple (small) amounts of data
An example of planning a treatment course was to:

- Take simulator film
- Acquire a CT scan
- Transfer CT images
- Generate a treatment plan
- Print out the plan
- Type in the plan to the linac
- Fit lead blocks
- Take port films
- Monitor doses

This is error-prone, time-consuming and only able to transfer simple (small) amounts of data
The problem gets bigger ...

- The advent of CT-Simulators removes the need for separate physical simulator films
- CT images have become much larger as CT scanners provide greater resolution
The problem gets bigger ...

- Co-registration (fusion) of MR and PET images with CT scans becoming more common
The problem gets bigger ...

- Plans with geometric and dose data become far too complex to print out and re-type
- Port films (or equivalent evidence) need to be transferred to the central patient record
The problem gets bigger ...

- Beam shaping devices increase plan complexity
Common DICOM RT objects …

- RT Plan
- RT Structure Set
- RT Image
- RT Dose
- RT Treatment Record and Treatment Summary
- Use of DICOM image sets
Typical workflow ...

CT Study → RT Plan → RT Treatment Record → Central Electronic Medical Record → RT Image

RT Plan, RT Image & RT Structure Set
What has changed?

- Still need medical images
 - … but these are larger and of different types
- Still need to identify target areas
 - … made easier by some software tools
- Still need to define a plan
 - … but these plans are far more complex
- Still need to deliver the treatment
 - … and to store the verification images and record of treatment deliveries …
Integrating the Healthcare Enterprise

- DICOM is no guarantee of connectivity
 - No policing of conformance statements
 - Conformance statements are only the start
 - Still practical issues exist
 - Optional modules and optional attributes

- IHE-RO is an initiative to improve information sharing through standards such as DICOM and HL-7
 - It addresses gaps, options and conflicting interpretations
 - IHE specifies precise interconnectivity requirements
 - IHE provides test tools and a detailed testing process
 - IHE enables greater confidence in interoperability
How has DICOM helped Radiotherapy

...

- The benefits of DICOM RT extensions are
 - Improved patient throughput
 - Improved clinical outcomes
 - Easier development for vendors
 - Less chance of transmission errors for critical data
 - Users have power in tenders by requiring DICOM

- DICOM has enabled advanced clinical techniques to become a practical reality worldwide
In summary …

- DICOM in RT is still being extended:
 - Treatment Course object
 - RT Worklist
 - RT Query Retrieve extensions
 - Image Guided Radiotherapy
 - All will be backward compatible

- Life without DICOM-RT is no longer really conceivable
And finally …

… thank you