
Overview:

HTJ2K Compression

WG-04

Bill Wallace, Radical Imaging

Chris Hafey, Amazon Web Services

Challenges with Existing

Compression

• JPEG 2000 has advanced features but has seen low adoption

– Significantly slower than other transfer syntax (at least 5x slower

than JPEG-LS to decode)

– Advanced features require image to be encoded using specific

parameters (e.g. scalable resolution requires RPLC progression

order, certain number of decompositions)

– Very complex to implement correctly (several interoperability issues

early on)

– Lack of availability of open source implementations for many years

(paid commercial libraries was the only option)

– Concerns over patent conflicts (increased risk of litigation)

•JPEG Lossless and JPEG LS

– Do not support scalable resolution access

– Little to no gain from parallelization (not designed for this)

WG-27 DICOMweb 2

JPEG2000 was extended in 2019 with a new block coder that

improves decode and encode speed by an order of magnitude. This

variant of JPEG2000 is referred to as High Throughput JPEG2000

(HTJ2K)

• ISO/JPEG standard (https://jpeg.org/jpeg2000/htj2k.html)

• Free of patent conflicts, royalty free

• Strong Open Source support (OpenJPH, OpenJPEG, GROK, ffmpeg)

• Slightly lower compression ratios than JPEG2000 (~5%)

• Significantly faster at decoding than all compressed transfer syntaxes

by at least 50% -> improved image display speed

• Supports most of the advanced JPEG2000 features (scalable resolution

access in particular)

• Lower implementation complexity

HTJ2K Compression

WG-27 DICOMweb 3

Learn more: https://github.com/chafey/HTJ2KResources

https://github.com/chafey/HTJ2KResources

• OSS Implementation in Cornerstone3D

• https://deploy-preview-779--cornerstone-3d-

docs.netlify.app/docs/concepts/progressive-

loading/stackProgressive

Type Network Size First Render Final Render

JLS 4g 10.6 M 4586 ms

JLS Reduced 4g 766 K 359 ms 4903 ms

HTJ2K 4g 11.1 M 66 ms 5053 ms

HTJ2K Range 4g 128 K 45 ms 4610 ms

Implementation Results

WG-27 DICOMweb 4

https://deploy-preview-779--cornerstone-3d-docs.netlify.app/docs/concepts/progressive-loading/stackProgressive
https://deploy-preview-779--cornerstone-3d-docs.netlify.app/docs/concepts/progressive-loading/stackProgressive
https://deploy-preview-779--cornerstone-3d-docs.netlify.app/docs/concepts/progressive-loading/stackProgressive

Resolution Scalability

5

128x128

(10KB)

256x256

(30KB)

512x512

(90KB)

HTJ2K Lossless CT Image - 140KB Total

Download

Viewer can dynamically improve the displayed image quality by decoding and rendering the image

bitstream as it is received. This results in better user experiences, especially over lower and variable

bandwidth network connections

Decode/Render Decode/Render Decode/Render

Download

Decode/Render

Viewer can display a 128x128 thumbnail of an image (e.g. series browser) by reading a small

number of bytes (10K) of the bitstream. This results in faster initial loading, less bandwidth

consumption and lower implementation complexity

Try it out: https://chafey.github.io/openjphjs/test/browser/index.html

Learn more: https://docs.google.com/document/d/1hMv75h8g5a8EvIopucdhElKdu7QGF1PgpAK4J1Ahvp4/edit?usp=sharing

https://chafey.github.io/openjphjs/test/browser/index.html
https://docs.google.com/document/d/1hMv75h8g5a8EvIopucdhElKdu7QGF1PgpAK4J1Ahvp4/edit?usp=sharing

Changes Overview

• Add lossy and lossless Transfer Syntaxes for HTJ2K

• Add constrained lossless Transfer Syntax to ensure

applications can leverage scalable resolution

features

● Add JPIP transfer syntax for sub-resolution fetches

• Add HTJ2K as a DICOMweb rendered media type for

faster decoding and smaller image sizes

WG-27 DICOMweb 6

Conclusions

• HTJ2K brings significantly faster image decoding for

all image types -> faster image access

• The new constrained transfer syntax ensures HTJ2K

images are encoded properly for scalable resolution

access -> applications can confidently use this

powerful feature

WG-27 DICOMweb 7

	Slide 1: Overview: HTJ2K Compression WG-04
	Slide 2: Challenges with Existing Compression
	Slide 3: HTJ2K Compression
	Slide 4: Implementation Results
	Slide 5: Resolution Scalability
	Slide 6: Changes Overview
	Slide 7: Conclusions

