

# WEB SERVICES FOR VOLUMETRIC RENDERING WG-27 Final Text

## SCOPE

#### Introduces

Web services for server-side volumetric rendering

#### Usage

• A web service client can request a rendered result by provide rendering parameters and/or a Volumetric Presentation State

## **GUIDING PRINCIPLES**

- Focus on the most common rendering patterns
- Derive parameters from existing Volumetric Presentation State attributes
- Keep Volumetric Presentation State behaviors consistent with current Part 18 / rendered
- Minimize client burden; can omit detailed parameters, leaving them to the servers' discretion
- Allow servers latitude to define and apply default behaviors (i.e., when in doubt, let the server decide)
- State-less (client makes no assumptions about the server ...but server may cache the Volume for performance)
- Target degree of rendering consistency similar to Volumetric Presentation State (PS17 XXX.I)
- Utilize the same Volume Input Requirements specified for Volumetric Presentation State (PS3 C.11.23.1)

## WEB CLIENTS

#### **Basic Functions**

#### Available in Query Parameters:

- Pan
- Zoom
- Windowing
- Set Quality
- Rotate
- Animate
- Set Render Method

#### **Advanced Functions**

Available by referencing a Volumetric Presentation State:

- Display Color
- Shading and Lighting
- Crop
- Compositing (i.e., fusion and blending)
- Annotate
- Render projection or orthographic view
- Render endoluminal view (i.e., fly through)

## WEB SERVICES BASIC USE CASE

- Original 2D CT image slices are reviewed on a web-based lightweight viewer.
- The viewer includes a hanging protocol that displays thick slab MIP images based on the result of a RESTful service request.
- The RESTful service request specifies a pre-identified rendering mode, slab thickness, spacing, and returned media type.



## WEB SERVICES BASIC USE CASE

#### Render a Thick Slab MPR from a Series Target Resource



## WEB SERVICE USING VOLUMETRIC PRESENTATION STATE

- A prospective liver donor is referred for a CT angiogram to assess their hepatic blood supply.
- A technologist segments the hepatic vein, portal vein and hepatic arteries in volumetric models that are saved as a DICOM Volumetric Presentation State.
- The surgeon selects the presentation state containing the rendered models of the anatomy of interest.
- The viewer submits a web service request referencing the presentation state.



## WEB SERVICES ADVANCED USE CASE

Render a Volume Rendering Volumetric Presentation State Target Resource



## RELATIONSHIP OF WEB SERVICES TO PRESENTATION STATES

 Volumetric Presentation States (supplements 156 and 190) save rendering parameters, segmentations and compositing, performed during post-processing of a specific patient study.



 Volumetric Rendering services render volumes based on parameters that are specified in the API request or in a Volumetric Presentation State target resource.



## WEB SERVICES QUERY PARAMETERS

- Derived from existing Volumetric Presentation State attributes
- Used to control image set inputs, algorithm and presentation
- When Query Parameters are omitted, the Origin Server is expected to determine an appropriate value, or use a reasonable default
- Query Parameters (except orientation) do <u>not</u> override behavior established in a Volumetric Presentation State



# WEB SERVICES RENDERING PIPELINE

## SIMPLE VOLUME PIPELINE

A set of frames that meets Volume Input Requirements (PS3 C.11.23.1)



## SIMPLE VOLUME PIPELINE

A set of frames that requires refinement to meet Volume Input Requirements



## MULTIVOLUME PIPELINE

A set of temporal frames that requires refinement to meet Volume Input Requirements



../renderedmpr?FrameContentSequence.TemporalPositionIndex=140-260&renderingmethod=maximum\_ip&orientation=a Accept: video/mp4

### WEB SERVICES KEY TERMS

- Volume Input Requirements: constraints on the input instances or frames identified as input to Volumetric Rendering. See PS3.3 C.11.23.1 Presentation Input Type Volume Input Requirements for a detailed definition. Only instances or frames conforming to Volume Input Requirements can be rendered
- **Volume Data**: Instances or frames conforming to Volume Input Requirements are resampled into Volume Data, represented by a set of parallel XY planes whose positions are relative to each other, arranged in a cartesian voxel grid.





# SPECIFY INPUTS & VOLUME DEFINITION

# WEB SERVICES TYPES OF INPUT

| Source IOD Type                     | Target<br>Resource | Target Description                                                                                                                                                                                | Resource URI                                                                      |
|-------------------------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Multi-frame                         | Instance           | An instance containing only a set of frames that satisfy Volume Input Requirements.                                                                                                               | <pre>/studies/{study}/series/{series}/ins tances/{instance}</pre>                 |
| Multi-frame                         | Instance           | An instance containing a set of frames with a subset that satisfies Volume Input Requirements. The subset is explicitly identified by the user agent.                                             | <pre>/studies/{study}/series/{series}/ins tances/{instance}/frames/{frames}</pre> |
| Multi-frame                         | Instance           | An instance containing a set of frames with a subset that satisfies Volume Input Requirements. The subset is identified by the origin server based on characteristics provided by the user agent. | <pre>/studies/{study}/series/{series}/ins tances/{instance}</pre>                 |
| Volumetric<br>Presentation<br>State | Instance           | An instance containing references (in the Volumetric Presentation Input Set Sequence) to a set of frames that satisfy the Volume Input Requirements                                               | <pre>/studies/{study}/series/{series}/ins tances/{instance}</pre>                 |
| Single Frame                        | Series             | A series containing only a set of instances that satisfy Volume Input Requirements.                                                                                                               | /studies/{study}/series/{series}                                                  |
| Single Frame                        | Series             | A series containing a set of instances with a subset that satisfies Volume Input Requirements. The subset is identified by the origin server based on characteristics provided by the user agent. | /studies/{study}/series/{series}                                                  |

## WEB SERVICES RELATED PARAMETERS

Parameters to specify input frames within the Target Resource that meet Volume Input Requirements (PS3 C.11.23.1)

- volumeinputreference: an image having characteristics of what is to be rendered (i.e., render images like this)
- Attribute Matching: specifies common Attribute/Value pair characteristics of the Volume Data (PS3.18 8.3.4.1)

# WEB SERVICES EXAMPLES

| Target Resource                                                  | Parameter                                                                                | Volume Type  |
|------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------|
| Legacy Instances in I Series                                     |                                                                                          |              |
| /studies/{uid}/series/{uid}/                                     |                                                                                          | Simple       |
| Multiple Phases, each in its own series                          |                                                                                          |              |
| /studies/{uid}/                                                  | CardiacRRIntervalSpecified=140-260 *defines image set, server determines volume grouping | Multi-volume |
| Legacy Series Containing Multiple Phases                         |                                                                                          |              |
| /studies/{uid}/series/{uid}/                                     | AcquisitionNumber=1-3 *defines image set, server determines volume grouping              | Multi-volume |
| One Phase within a Classic Series Containing Multiple Phases     |                                                                                          |              |
| /studies/{uid}/series/{uid}/                                     | AcquisitionNumber=2                                                                      | Simple       |
| One Stack within an Enhanced Instance Containing Multiple Stacks | s                                                                                        |              |
| /studies/{uid}/series/{uid}/instance{uid}/                       | StackId={n}                                                                              | Simple       |

## WEB SERVICES USE CASE: MULTIPHASE LIVER

- 3 scans through the liver are obtained, each corresponding to a contrast phase (arterial, portal-venous and venous)
- All images are in a single series of Classic CT Image objects.
- The scanner used to acquire the images increments Acquisition Number (0020,0012) for each "pass" through the liver:
  - I = arterial
  - 2 = portal-venous
  - 3 = venous
- .../series/{series}/renderedmpr?AcquisitionNumber=1-3 Example:

&renderingmethod=maximum ip

&orientation=a &animationrate=10 Accept: video/mp4

Acquisition |







# **ALGORITHM**

## WEB SERVICES RELATED PARAMETERS & RESOURCES

Control the rendering algorithm applied to the Volume Data

#### **New Resources**

- /rendered3D: resource specifies 3D volumetric rendering
- /renderedMPR: resource specifies planar reformatting

#### **New Parameters**

- renderingmethod: the display algorithm, i.e., volume rendered, MIP, MINip, average
- mprslab: MPR slab thickness

## WEB SERVICES RELATED PARAMETERS & RESOURCES

Control the rendering algorithm applied to the Volume Data

Existing Parameters (see PS3.18, Section 8.3.5.1.4)

Windowing: control window/center of MIP, MINip, average renderings

## WEB SERVICES EXAMPLES

|                                     | Rendering Type | Rendering Method | VOI                      | Slab       |
|-------------------------------------|----------------|------------------|--------------------------|------------|
| 3DVR                                | /rendered3D    |                  |                          |            |
| 3D MIP                              | /rendered3D    | =maximum_ip      | window, center, function |            |
| Planar reformat (nominal thickness) | /renderedMPR   | =average_ip      | window, center, function |            |
| 5mm slab, average                   | /renderedMPR   | =average_ip      | window, center, function | mprslab=5  |
| 25mm slab, MIP                      | /renderedMPR   | =maximum_ip      | window, center, function | mprslab=25 |
| 2mm slab, minIP                     | /renderedMPR   | =minimum_ip      | window, center, function | mprslab=2  |
| 10mm slab,VR                        | /renderedMPR   |                  |                          | mprslab=10 |





# **PRESENTATION**

## WEB SERVICES RELATED PARAMETERS

- viewport: control scaling (i.e., Render Field of View) of the rendered 2D image or video
- Two mutually exclusive options to determine the initial orientation of the resampled Volume Data:
  - The "orientation" parameter roughly establishes the standard anatomic position of the patient as viewed by the camera, and
  - Camera orientation parameters ("viewpointposition", "viewpointlookat", or "viewpointup") precisely establish the camera position and direction as it views the patient. See C.II.30.I in PS3.3







# **ANIMATION**

### RELATED PARAMETERS

Initial frame is established by orientation/viewpoint parameters. The animation parameters dictate subsequent frames. The origin server determines initial phase displayed for multivolume temporal data.

- swivelrange: angular range over which a rendered volume rotates around the swivel axis.
- volumetriccurvepoint: coordinates of points of the animation curve.
- animationstepsize: distance between animation steps (degrees between steps in a swivel, or mm between steps along an animation curve). This is identical to animation in a Volumetric Presentation State.



See PS3.17 XXX.3.4.1

# WEB SERVICES EXAMPLE

|                 | Media<br>Type | Rendering<br>Type           | Animation                       | Direction             | Rate                   |
|-----------------|---------------|-----------------------------|---------------------------------|-----------------------|------------------------|
| Single Volume   | Image         | /rendered3D<br>/renderedMPR | none                            |                       |                        |
|                 | Video         | /rendered3D                 | Rotating 3D                     | swivel                | animationrate<br>steps |
|                 | Video         | /renderedMPR                | Planar stack                    | volumetriccurvepoints | animationrate<br>steps |
|                 | Video         | /renderedMPR                | Radial batch stack              | volumetriccurvepoints | animationrate<br>steps |
| Temporal Volume | Video         | /rendered3D<br>/renderedMPR | Beating heart                   |                       | animationrate          |
|                 | Video         | /rendered3D                 | Rotating + Beating heart        | swivel                | animationrate<br>steps |
|                 | Video         |                             | Planar stack + Beating<br>heart | volumetriccurvepoints | animationrate<br>steps |





# **RETURN IMAGE**

# **MEDIA TYPES**

| Volumetric <b>Presentation</b> | Resource Category (PS3.18 Table 8.7.2-1) | Return Media Type<br>(PS3.18 Table 8.7.4-1)                    | Example                          |
|--------------------------------|------------------------------------------|----------------------------------------------------------------|----------------------------------|
| Static                         | Single Frame Image                       | image/jpeg<br>image/gif<br>image/png<br>image/jp2<br>image/jph | Lateral projection of a 3D ankle |
| Animated                       | Multi-Frame Image                        | image/gif                                                      | Rotating 3D ankle                |
| Animated                       | Video                                    | video/mpeg<br>video/mp4<br>video/H265                          | Rotating 3D ankle                |

#### RETURNING RENDERING METADATA

#### Use Case

A client wants to request a "default" volume rendering from the origin server, but expects its user to want to modify parameters for updated renderings.

- 1. A client requests a volume rendering and provides no query parameters.
- 2. The origin server returns the rendering based on default values that it chose to apply.
- 3. The client repeats the request, adding the volumetricmetadata parameter.
- 4. The origin server returns a response module containing all the applied parameters and values.
- 5. The client modifies some parameter values and makes a new volume rendering request including all the parameters.