

Supplement 217

NEUROPHYSIOLOGY WAVEFORMS DICOM WORKING GROUP 32 LETTER BALLOT SILVIA WINKLER, DAVID CLUNIE 2020-04-07

Working Group 32 Neurophysiology Data

ORGANIZATION AND PURPOSE

Chaired by:

- Jonathan Halford Medical University of South Carolina (MUSC)
- vacant

Secretary:

The International Federation of Clinical Neurophysiology (IFCN)
 Catherine Lamoureux

Ultimate goal is

 a comprehensive, standard-based digital platform for neurophysiology in the patient care setting

New specification should

- Leverage the existing and growing ecosystem of DICOM-capable systems in use in healthcare institutions
- Leverage standards already in use in the neurophysiology industry

Short-term objectives:

- New IOD(s) for storing neurophysiology data in PACS or VNA
 - Direct association with the patient
 - Together with related objects such as video or ECG
 - Keeping data synchronized
- Gap analysis of existing DICOM Standard with respect to potential neurophysiology requirements (e.g. waveform compression)
- Identify and establish relationship to other DICOM Working Groups currently responsible for related features

Priorities for the identified gaps

Milestones so far:

- In Vienna 2016 some research projects were initiated:
 - Using DICOM Waveforms for EEG and Sleep Studies
 - proofed EHR integration, EEG analysis algorithms running on DICOM Waveforms
- IFCN Task Force in 2018
 - "Common Standard Format for Neurophysiology Data Exchange"
 - Clear vote of the IFCN Task Force for DICOM
- Kickoff for Working Group 32 in 12/2018
- First Read of Sup217 in 06/2019
- Public Comment ended in 01/2020

Neurophysiology Waveforms

EXTENDING DICOM WAVEFORMS TO NEW DOMAINS

Supplement 217 addresses

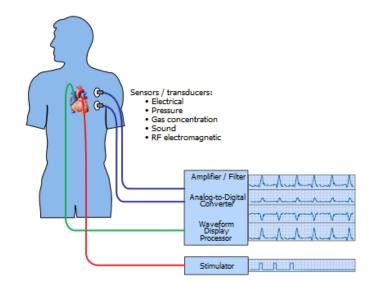
Exchange and storage of neurophysiology data like

- Electroencephalography (EEG)
- Electromyography (EMG)
- Electrooculography (EOG)
- Polysomnography (PSG)

and

Continuous recording of the patient's position

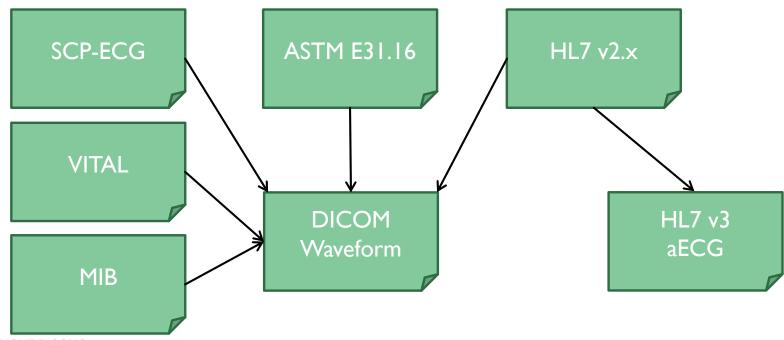
DICOM Waveforms


DICOM Support since 2000

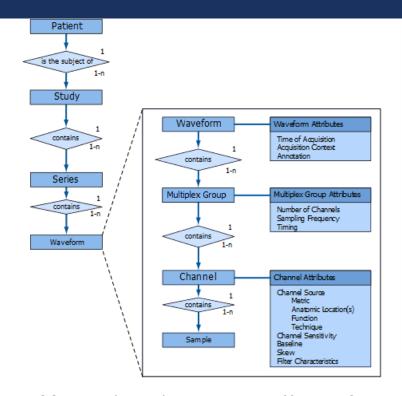
Audio: 2 SOP Classes

ECG: 3 SOP Classes

12-lead, General ECG, Ambulatory


- Arterial Pulse Waveform
- Respiratory Waveform
- Basic Cardiac Electrophysiology
- Hemodynamic

DICOM PS3.17 Fig. C.4-1.


DICOM Waveforms

DICOM Waveforms

- Waveform Attributes
 - Acquisition Time
 - Acquisition Context
 - Annotations
- Channel Multiplexing
- Channel Attributes
 - Channel Source
 - Scaling
 - Callibration
 - Filter
- Sample Values

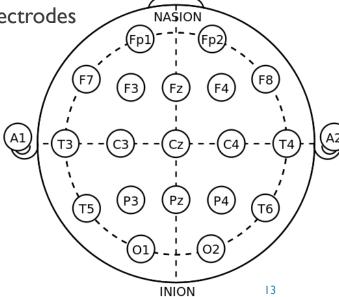
Clinical Scenarios

Scenario	Recording	Indication
Routine EEG	Scalp EEG	Encephalography, epilepsy
EEG-Video-Monitoring	Scalp EEG	Seizure characterization, presurgical epilepsy evaluation
EEG-Video Monitoring – intracranial	Implanted electrodes	presurgical epilepsy evaluation
Longterm EEG Monitoring	Scalp EEG	Encephalograpyh, epilepsy, ICU
Polysomnography	Scalp EEG, EMG, EOG + additional	Sleep disorders
High-density EEG	More Electrodes, req. 3D localization	
EEG-fMRI	Sync. Acquisition of EEG and MRI	

Routine Scalp EEG

Properties

Electrode positions according the international 10/20 or 10/10 system

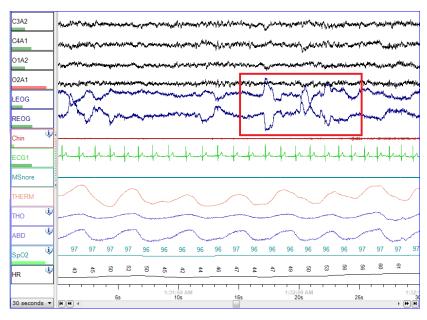

Maybe alternative setting using a cap instead of single electrodes

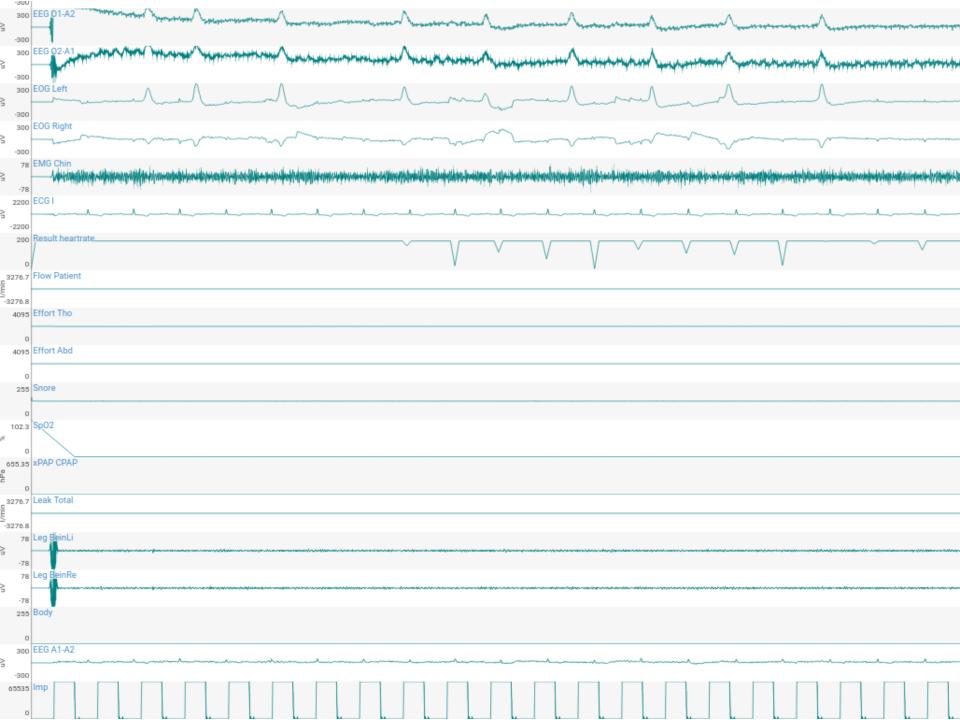
Up to 32 channels, sampling frequency up to 1024 Hz

Additionally recorded: single ECG channel

Nomenclature: ISO IEEE 11073 10101

- Leads
 A.8.4 Sites for EEG-electrode placement on the head
- Annotations


By トマトン124 (talk) - Own work, Public Domain, https://commons.wikimedia.org/w/index.php?curid=10489987


Polysomnography

Multimodal recording:

- EEG is essential, additionally required:
 - EMG (activity of skeletal muscles)
 - EOG (eye activity)
- Reuse of existing DICOM objects:
 - ECG
 - Pulse oximetry
 - Sound recordings
 - Video

By NascarEd - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=24506939

Multi-channel Respiratory Waveform

- Existing IOD is limited to a single channel
- Existing Context Group for respiratory channel sources (CID 3005) contains only a single value
- PSG respiration monitoring needs more channels and distinguishable channel sources

Body Position

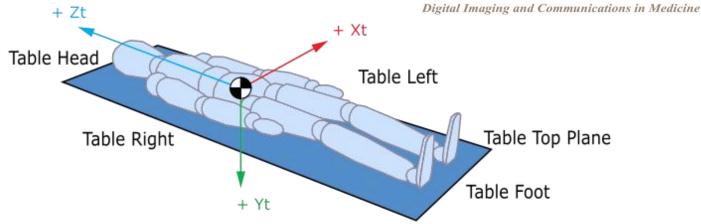
- DICOM has no IOD to monitor the patient's position continuously
- [WG-07 Sup. 160 worked on patient position monitoring]
- Tracking the patient's movement is essential for PSG
 - Video
 - Sensor(s) applied to the patient's body>> Patient Position IOD

Body Position cont.

Proprietary PSG systems often store 5 discrete values:

- supine (the patient's face being in an upward direction)
- lateral decubitus left (patient's left side being in downward direction)
- prone (the patient's face being in a downward direction)
- lateral decubitus right (patient's right side being in downward direction)

upright (the patient's chest is elevated from the bed)


Body Position cont.

To meet this requirement an IOD was defined as follows:

- A single multiplex group
- not limiting the number of channels
- A defined CID with different types of channel sources
 - Single channel monitoring just storing 5 discrete values
 - Two channel monitoring storing two rotation angles:
 - Channel I (head-feet-axis rotation: supine, lat. decubitus left, prone, lat. decubitus right)
 - Channel II (laying down versus sitting/standing upright)

By amending CID 30ww further position monitoring methods can be added easily.

Position Value	Channel I	Channel II
supine	0	0
lateral decubitus left	90	0
prone	180	0
lateral decubitus right	270	0
head up (sitting or standing)	0	90
feet up	0	-90

Work Items Defered to Later

- Waveform compression
- Long term monitoring
- High density EEG Intracranial EEG
- Evoked Potentials
- Magnetoencephalography (MEG)
- Amend body position to sensor data