THE DICOM 2013 INTERNATIONAL CONFERENCE & SEMINAR March 14-16 Bangalore, India

Tele ICU in India

Powering Critical Care

Dr. Ashwin K Mani

American Board Certified in Internal Medicine, Pulmonary and Critical Care Medicine

Director, Clinical Informatics

InteleICU

Consultant, Pulmonary and Critical Care Medicine Apollo Hospitals, Chennai

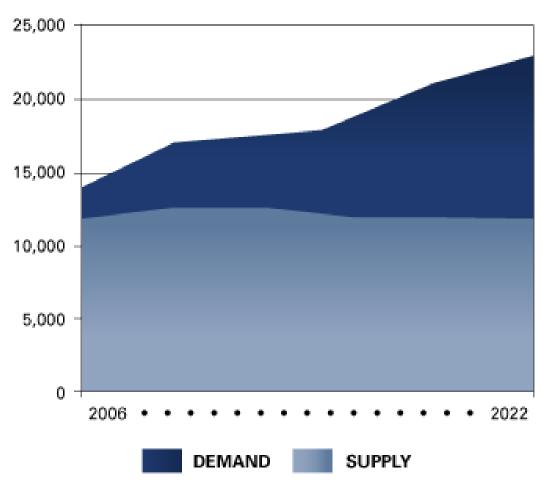
Outline

- 1. Who is an intensivist?
- 2. Why is there a need for a teleICU solution in India?
- 3. How does teleICU work?
- 4. The challenge of teleICU in the Indian Scenario

Who is an intensivist?

- * A specialist who is trained in monitoring and management of critically ill patient
- * Intensivists can have a background of medicine, anesthesia, pulmonology or rarely even surgery or cardiology
- * Works to keep patients alive by providing support to organ systems
- * Critical Care is a relatively new field but demand has increased so much in the last few years that it

 March 2013 Demonstrained intensivists


Background

- * Mortality rates in ICU are very high typically 10-20%
- * About 200,000 patients die in ICUs in USA every year
- * LEAPFROG group recommendations-Mortality rates are significantly lower in hospitals with ICUs managed exclusively by board-certified intensivists
- * Research has shown that in ICUs where intensivists manage or co-manage all patients versus low intensity there is a 30% reduction in hospital mortality and a 40% reduction in ICU mortality.
- * Data suggests that over 54,133 deaths that occur in the ICU could be avoided if The Leapfrog Group IPS Safety Standard were implemented in all urban hospitals with ICUs across the US

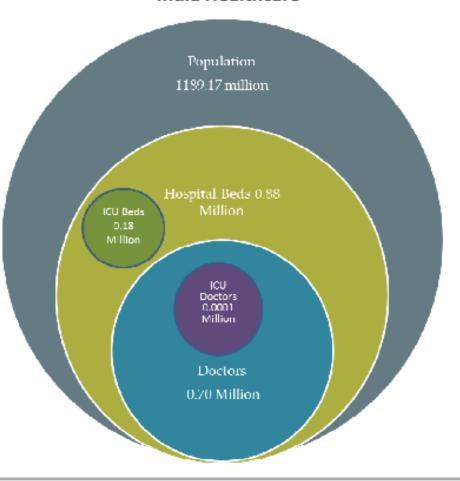
Intensivists Supply/Demand 2006 - 2022

Committee on Manpower for Pulmonary and Critical Care Societies (COMPACCS) JAMA.2000

Indian scenario

- * 70,000 ICU beds available including all types and across all hospitals and small time nursing homes in India that cater to five million patients requiring ICU admission every year
- * Almost 80 per cent of investment will have to come from the for-profit private and charitable sector where Critical Care accounts for 20 to 30 per cent of a hospital's budget
- * Upto 50% of ICU costs may go for hiring trained professionals (in western studies)

Health Care Scenario


India

- Doctor-Patient Ratio 1:2000
- Nurse-Patient Ratio 1:2950
- Number of ICU Specialist Doctors ± 100
- Total Hospital Beds (2009) 8,75,000
- Total ICU Beds (2009) 180,000
- 67th Rank in Health Care amongst Developing Nations
- Registered allopathic Doctors 5.5 Lakhs and Nurses is 3,72,000 (MoH, GOI)

Rest of the World

- USA Doctor Patient Ratio 1:390
- USA Doctors 954,000 (2010) and Nurses 3,100,000 (2009)
- UK (GB) Doctor Patient Ratio 1:440
- UK Doctors 253,000 (2012) and Nurses 375,000 (2010)
- Australia Doctor Patient Ratio 1:400

India Healthcare

Critical Care Shortfalls in India

- Lack of standards/laws/regulations
- Need for structured training and formal certification for physicians and nurses
- ICU care is primitive or non existent at district hospitals in rural India
- Lack of grading of ICU's in Critical Care
- The number of available beds is disproportionately low, both in private and public hospitals
- Low doctor density ratio of 0.5 doctors per

Critical Care Challenges

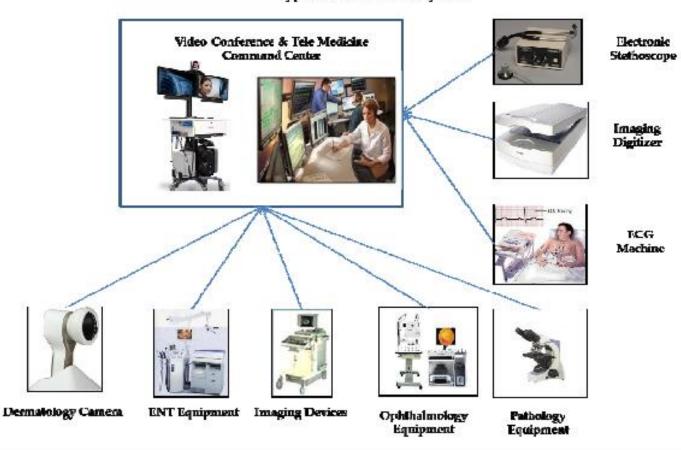
Most hospitals today have difficulty in meeting the demand for quality Critical Care due the following factors:

- * Lack of trained Intensivists and Nursing staff.
- Round the clock coverage
- * Unavailability of concrete statistics/data relating Medical Errors, Length of Stay, etc.
- * Lack of use of technology and available knowledge

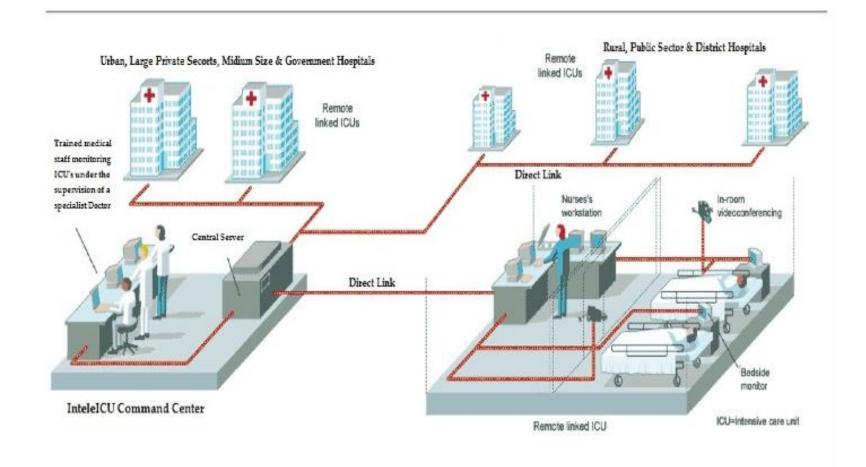
Tele-ICU

Tele-ICU

- Assists hospitals by providing 24 x 7 coverage remote monitoring assistance to the bed side teams
- Provides great value to hospitals providing secondary level and tertiary level care in Urban, Semi Urban and Rural areas

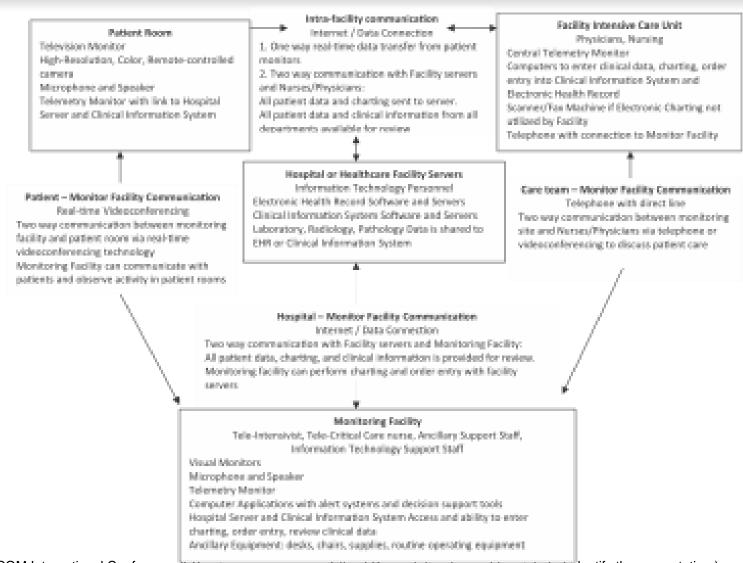


Typical telemedicine system

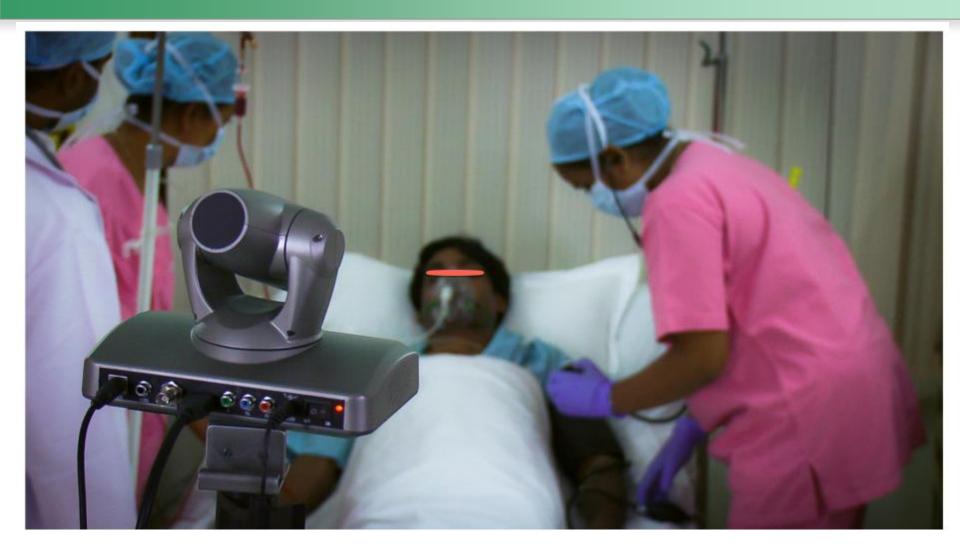


Typical Telemedicine System

Tele CU Mode EDICOM Digital Imaging and Communications in Medicine



Tele- ICU Operational structure


Monitoring center intensivist

Remote ICU

Communication

Data needed

- Video
- Continuous monitoring
- Lab data
- Intake/ Output data
- Ventilator data
- H&P and progress notes
- Ability to place notes
- Placing orders
- Radiology
- Others EKG etc

Video

- Ability to move the camera PTZ
- Can look at patients respiratory excursions to see if patient is in distress
- Look at patients chest, abdomen and ventilator graphics to see if ther dyssynchrony
- Talk to patients (if awake)
- Talk to patients families- even end of life discussion

March 2013 DICOM International Conference & Seminar Title of Presentation (may abbreviate but identify the presentation.)

Challenges

- Language barrier- problem in India when monitoring center is located in a different state
- Getting patients and families to be comfortable with tele ICU
- Delay in transmission of data can be dangerous in ICU setting- especially in an emergency setting
- Always have back up plan

Monitoring

20

Monitoring

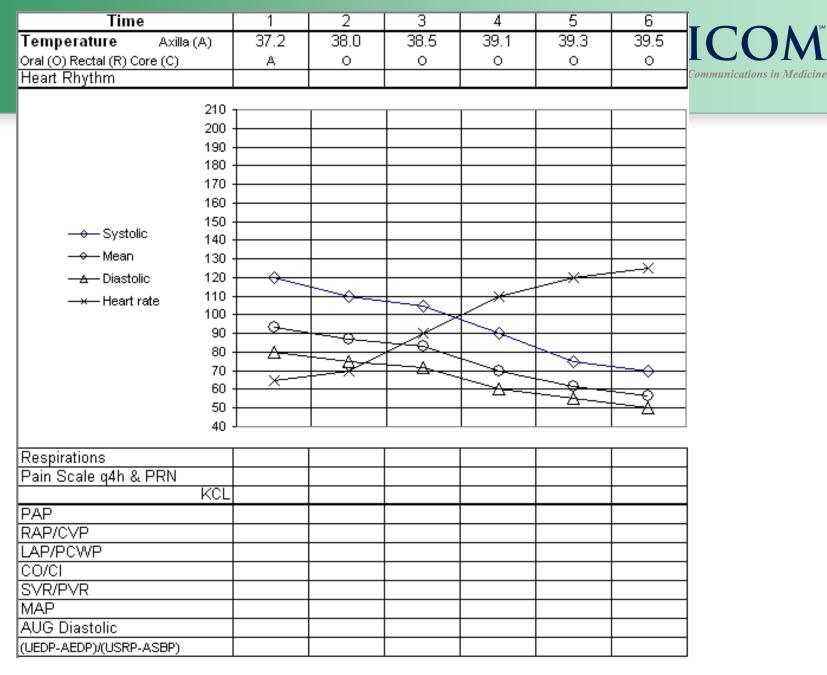
- Continuous monitoring
 - ECG
 - Arterial pressure tracing waveforms
 - CVP
 - -ICP
 - oxygen saturation
 - blood pressure

Challenges

- Not all ICU's have central monitoring
- Some have single channel monitoring
- Central monitoring facility available but not used /upgraded due to financial considerations
- Delay in data acquisition
- Need continuous monitoring and trending

Lab data

- HIS and EMRs not available in many hospitals
- Data can be scanned and then entered into the monitoring centers EMR by monitoring center staff
- Direct capture of data from the HIS
- Allow remote access to HIS for the monitoring center physician

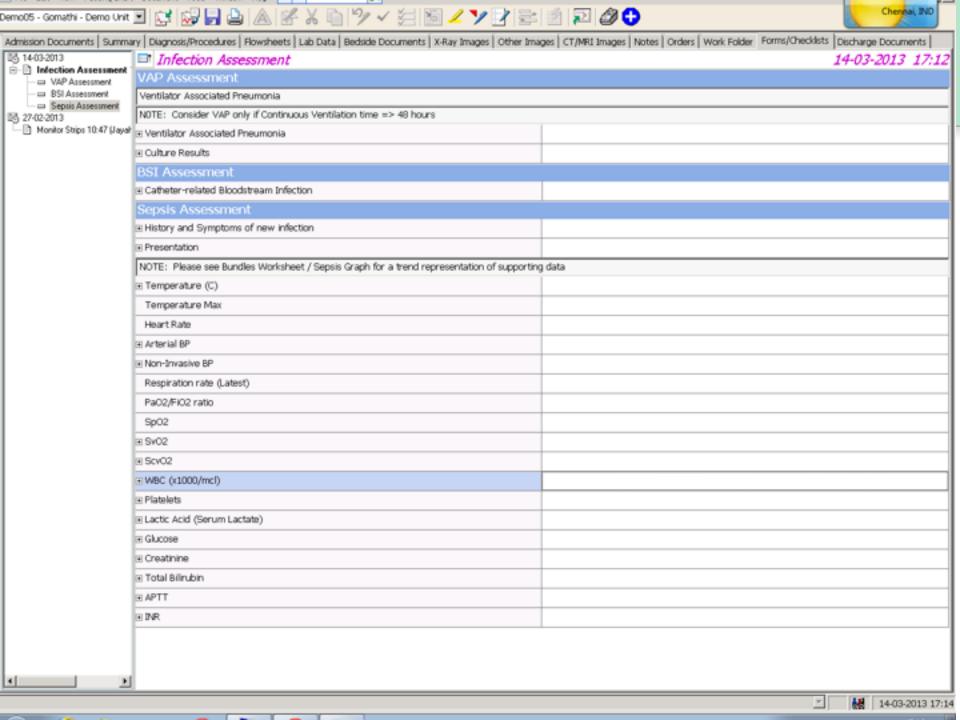

	ummary Diagnosis/Procedures Flow		ata Bedside D	ocuments X	-Ray Images	Other Images	CT/MRI Image	es Notes On	ders Work Fol	ider Forms/Ch	ecklists Disch	arge Documents
Lab Flowsheet	Lab Flowsheet	27-02-2013										9
Hernatology		08:00	09:00	10:00	11:00	12:00	13:00	14:00	15:00	16:00	17:00	.Z.
Heme Graph	₩BC (x1000)		6									_
Coagulation	Differential Count		41,21,3,2,1 .5									
Chem Graph	Platelets		150001									
Chemistry	⊞ Hgb		14.7									
Enzymes	⊞ Hct (PCV)		36.9									_
Blood Gases	⊞ PT		8.1									_
	⊕ PTT		30.2									
Drug Levels	⊞ D-Dimer		102									
Urine	⊞ Fibrinogen		202									
CSF	⊞ Bleeding Time		3									
Microbiology	Clotting Time		17									_
Virology	⊞ APTT		16.2									•
Other	Sodium		138									_
	Potassium		5.40									
Renal Calculations			95									
	⊞ HC03		32									
	⊞ Glucose		83									
	⊞ Blood Urea		46									
	⊞ Creatinine		7.7									<u> </u>
	⊞ CPK											
	⊕ CK-MB Index											
	Troponin I											
	Troponin T											
	⊞ Labs Sent											
	⊞ Arterial pH											_
	⊞ Arterial pCO2											
	⊞ Arterial pO2											
	⊞ Arterial HCO3											
	⊞ Arterial SaO2											
	Base Excess ■											1
	⊞ Labs Sent											-
	⊞ Labs Sent											
	•											>
											× .	
∑Start												

Intake / output - flowsheets

- Usually entered by nurse
- Most Indian hospitals still paper entry
- Needs to be entered into monitoring center EMR
- Data- scanned and faxed over every shifts
- Modern syringe pumps can feed data directly to the computer but very expensive

Ventilator data

- Ventilator settings
- Ventilator waveforms
- Ability to look at waveforms and patient in real time
- Ventilator data can be acquired directly to the EMR but



Patient data and order entry

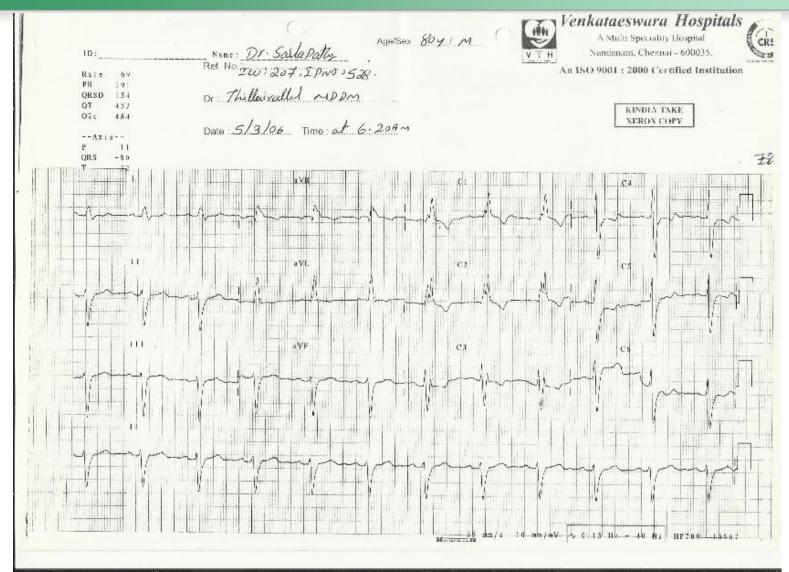
- Most hospitals don't have EMR's
- Even if EMRs are present different EMR's may not share data well with the command center EMR
- Remote access required to the hospital EMR from command center
- Data crucial for making decisions- also important for documentation as their are now two different sets of physicians managing the patient
- Orders from the command center physician should be stored at remote ICU for documentation and legal purposes
- Closed loop communication required- to ensure orders carried out
- Majority of ICU's have multi "specialist" approach need to give a cohesive plan involving key decision makers

Radiology

- PACS not available in many hospitals
- Medical grade scanners too expensive

ScanMaker 9800XL Plus

Professional Graphic A3 Scanner



EKG

Additional benefits of Tele ICU

- Implementation of protocols to ensure standard of care is implemented
- Ensuring best practices are followed such as DVT prophylaxis and low tidal volume for ARDS
- A sense of security to patients, families and bedside staff
- Early recognition of problems

What TeleICU cannot solve

- Doctor needed for procedures , emergencies
- Over confidence because staff feels that doctors are always present
- The initial costs of setting up especially in Indian ICU's which are offline

References

Author Contacts

- Full Name: Dr.Ashwin Kumar Mani
- Email: ashwin@inteleicu.com

- Snail Mail: InteleICU ,Door 29, Plot No:1997, J Block, 13th Main Road, Anna Nagar, Chennai 600040
- Tel +91 44 661 247 00 Thank you for your attention !