

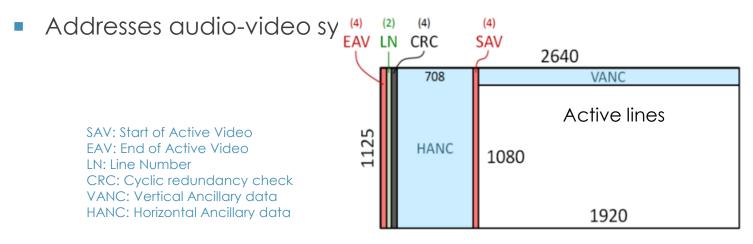
DICOM Educational Conference Brisbane, Australia

SEPTEMBER 24-25, 2018

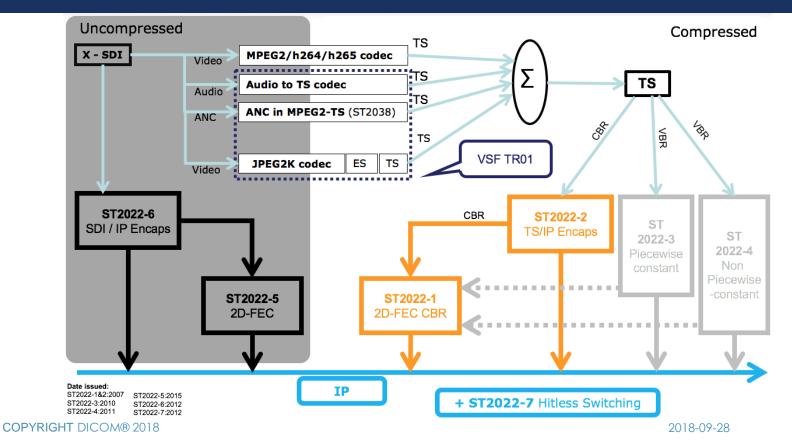
DICOM REAL-TIME VIDEO

EMMANUEL CORDONNIER, B<>COM CO-CHAIR DICOM WG13

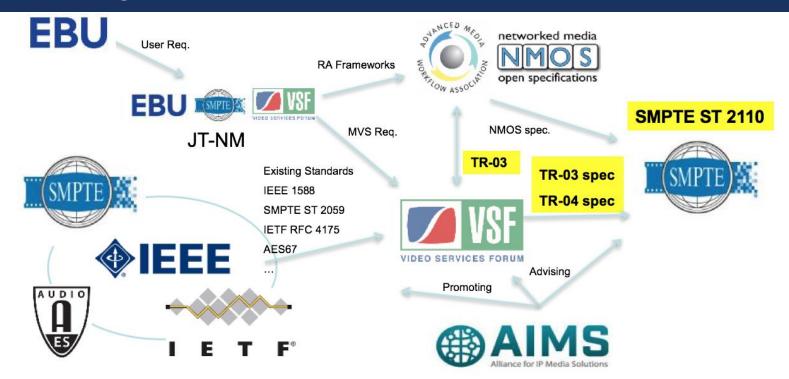
Technology Background VIDEO OVER IP FOR TV STUDIOS


COPYRIGHT DICOM® 2018

2018-09-28


Multiplexed Video Over IP

- Mimics coaxial cable by multiplexing all information in the same stream
- Audio and ancillary data (subtitles...) are embedded in the hidden parts of the video
- That is neither efficient (latency...) nor flexible



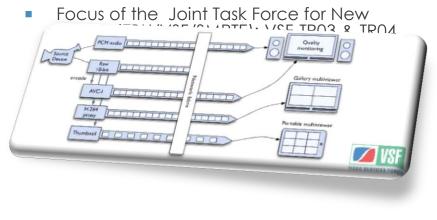
Maze of SMPTE IP Video Standards

Convergence on SMPTE ST2110

Courtesy: Felix Poulin / EBU

COPYRIGHT DICOM® 2018

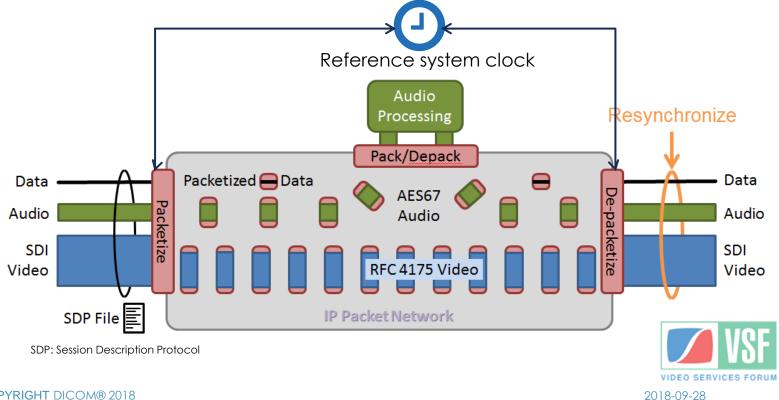
2018-09-28



Professional AV world (R)evolution

- From 1998 to 2012:
 - Migration of pro AV transport from coax infrastructure to networking technologies: Ethernet (IP), first for long haul, then for intrastudio applications (ProMPEG, VSF, SMPTE, IETF, ISO).

- 2013-2017: «There is more to be done with IP than merely replacing a cable with another »
 - Using SDN technologies for open control of networking gear along the path of AV streams.
 - Re-visiting the essence exchange and transport model.



TR03 resulting standards: SMPTE ST 2110-*

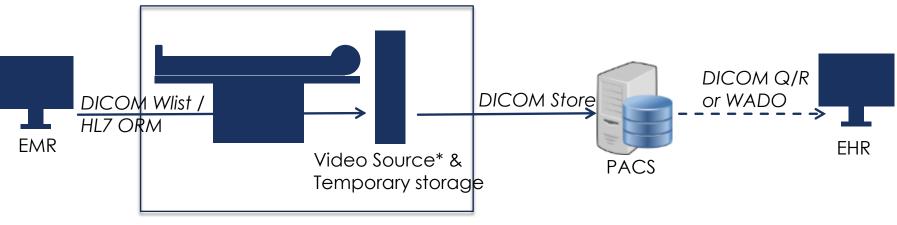
VSF-TR03/ST 2110-10 (audio) in a nutshell

Example: live audio processing

Video in DICOM

FROM VIDEO STUDY STORAGE TO ... REAL-TIME VIDEO (SUP202)

COPYRIGHT DICOM® 2018


2018-09-28

Existing DICOM Video Storage

For example, Operating Room to EHR via PACS

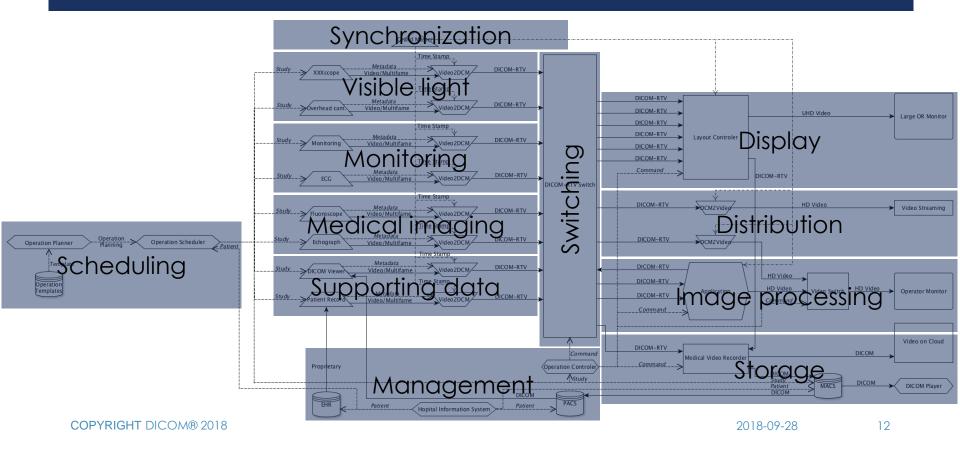
- Not real-time
- Patient information in video metadata

Operating Room

*over head camera, endoscope, microscope ...

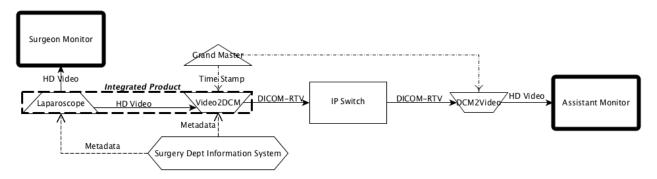
Video Interoperability in Operating Room(s)

- The OR is core to health businesses
 - 20% of hospital expenditures, 6% of health costs
 - 50 million procedures per year (U.S.)
- Important risks
 - 300,000 preventable severe adverse events / year (U.S.)
 - only ¼ of which are related to surgeon gesture itself
- Need to improve
 - OR infrastructure mainly based on proprietary solutions
 - prohibitive purchase & operation
 - no shared resources among room



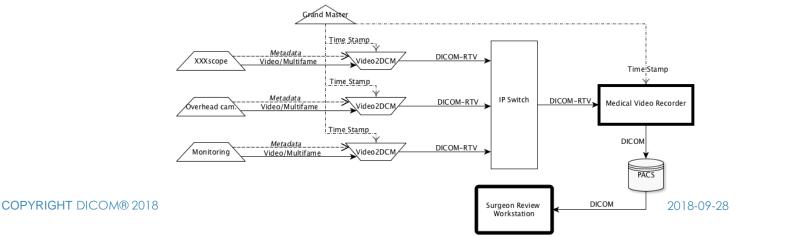
Users of Real-Time Video

- Varied video sources (not just visible light)
 - Endoscopy (gastroenterology, orthopedic surgery, ENT)
 - Laparoscopy
 - Microscopy
 - Fluoroscopy
 - Ultrasound
 - Angiography
 - Ophthalmology
 - General surgery: overhead camera
 - Dental surgery
 - HIT displays (patient vital monitors, chart...)


Use Cases: Global Picture

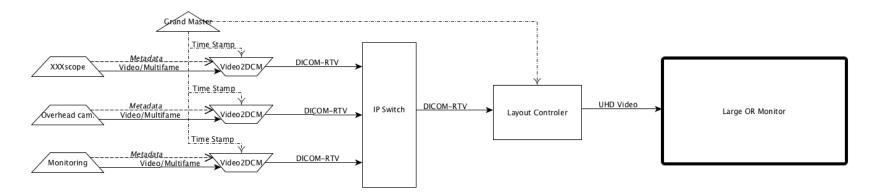
Duplicate video on multiple monitors

- Two operators contributing to a procedure
 - a surgeon performing the operation
 - an assistant controlling the imaging system
- Latency between monitors should be compatible with collaborative activity on surgery
- Implementation either in the device or as a converter

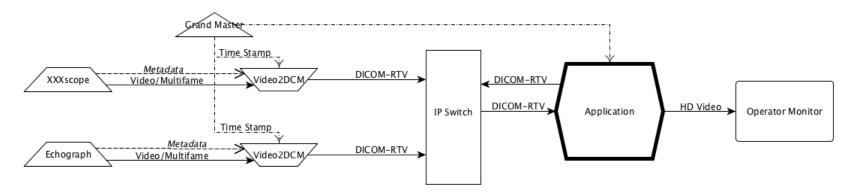


14

Post-procedure Review

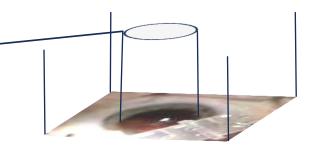

- Senior surgeon watches a recorded procedure
 - Reviews to understand what happened
 - Decides if the procedure is a success or need to re-operate
- Need good quality recording of all video (endoscopy, monitors, ...) and associated metadata
- Need accurate time synchronization between channels

Automated OR Displays


- "Multi-displays" tile multiple videos on one monitor
- Tiling/Layout depends on the procedure step
- Need automated layout set-up ("hanging protocol")
- Metadata drives layout automation

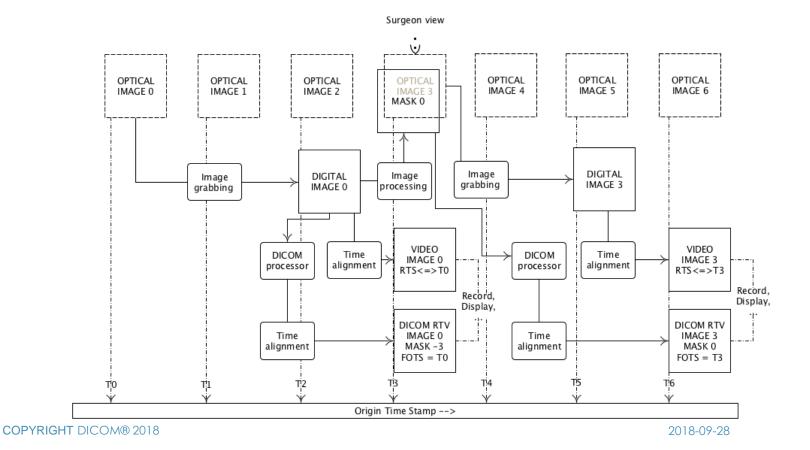
Augmented Reality

- Image-guidance improves interventional procedures
- Real-time display may be current feed(s), or combined with reference imaging (e.g., PET tumor location)
- Need real-time video, metadata, and good synch
- Minimizing latency improves safety and efficacy

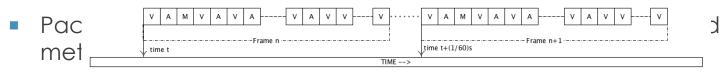


Example: Cataract surgery

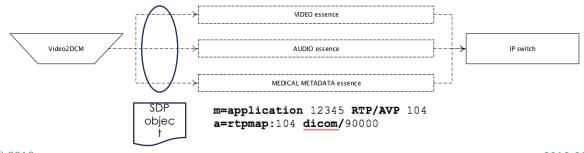
Overlay plane



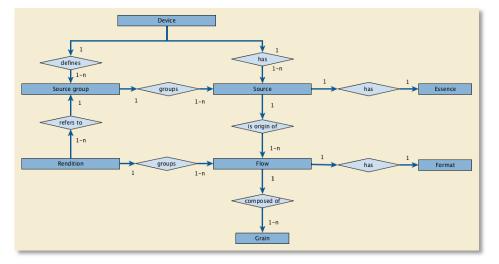
Surgeon view


Example: Implementation

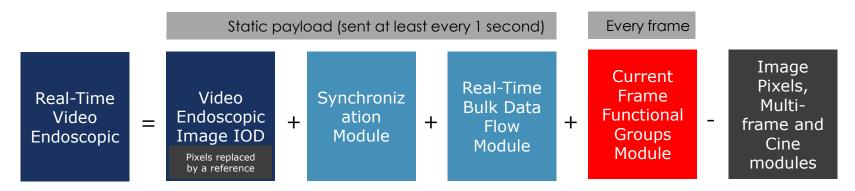
Real-Time Video Principles


- Real-time data is comprised of video, audio and associated metadata essences
- Each essence is carried as a flow over a multicast IP-based infrastructure
- A flow broadcast by one source device may be consumed by any number of devices
- A Flow is transmitted as a sequence of Grains (each may be one or more packets)
- Grains (frames) are synchronized/"aligned" via PTP (Precision Time Protocol)

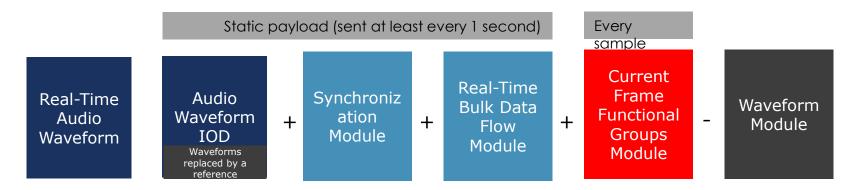
Real-Time Session Description


- SMPTE ST 2110-10 requires an SDP object describing a set of flows
 - Nature of the flow (video, audio, DICOM-RTV metadata...)
 - one IP port per flow
 - Video characteristics
 - Source identification
 - • •
- DICOM metadata also incorporates the main SDP content
- DICOM Conformance Statements describe how SDP objects are accessed

Real World Model


- A Device can provide and/or consume content
- A producing Device has one or more Sources
- A Source is the origin of one or more Flows (same content)
- A Flow corresponds to a SOP Instance (with a UID & transfer syntax)
- A Rendition links multiple Flows (e.g., video and audio)

Metadata Flow (for video)


- Video Flow contains only Bulk Data (no metadata)
- Metadata Flow references the Video Flow (similar to JPIP) but contains no Pixel data
- Metadata Flow describes the Video Flow using (modified) modules from existing video IODs

Metadata Flow (for audio)

- Audio Flow contains only Bulk Data (no metadata)
- Metadata Flow references the Audio Flow but contains no waveform samples
- Metadata Flow describes the Audio Flow using (modified) modules from existing audio IODs

Metadata Packet Structure

RTP header version (V) Padding (P) Extension (X)	RTP Header	
CRSC (CC) marker (M) payload type (PT) sequence number (RTP) timestamp		Main
synchronization source (SSRC) identifier RTP header extension	4	
PTP Sync Timestamp		
PTP Origin Timestamp		Extension
Flow Identifier		
Source Identifier	111/	/
[Grain Duration]	1 Y	
Grain Flags		
Payload	- [[RTP Payload
DICOM dataset compliant with real-time communication		-
Payload header (DICOM RTV Meta Information) Definition of the header e.g., Media RTV SOP Class UID, Transfer Syntax UID		RTV Meta Info Details of encoding
Dynamic payload (Current Frame Functional Groups Module)		
Parameters of the current frame e.g., Position of the ultrasound probe, circle defining the eye		RTV Dynamic Frequently changing
[Static payload (Video xx Image / Waveform / Rendition Document IOD)] (present at least every second)	*	
Info Patient/Study/Series/Equipment/FrameOfReference/Synchronisation		
Flow Description		RTV Static
Parameters shared with all frames: list of: source_id/flow_id (Cf. some information of the SDP "translated" to DICOM)		Unchanging but resent
		every second to sync up
		newly connected
		/ i
••••••••••••••••••••••••••••••••••••••		

IOD Modules

IE	Module	Reference	Usage
Patient	Patient	<u>C.7.1.1</u>	М
	Clinical Trial Subject	<u>C.7.1.3</u>	U
Study	General Study	<u>C.7.2.1</u>	M
	Patient Study	<u>C.7.2.2</u>	U
	Clinical Trial Study	<u>C.7.2.3</u>	U
Series	General Series	<u>C.7.3.1</u>	M 2
	Clinical Trial Series	<u>C.7.3.2</u>	U 🧹
Equipment	General Equipment	<u>C.7.5.1</u>	м 🗸
Frame of Reference	Frame of Reference	C.7.4.1	M U M M Reference to PTP (vs.
	Synchronization	C.7.6.X1	M Reference to PTP (vs.
	General Image	<u>C.7.6.1</u>	M NTP)
	General Reference	<u>C.12.4</u>	U
	Real-Time Bulk Data Flow	C.7.6.X1	M M U U
	Acquisition Context	<u>C.7.6.14</u>	M
	Device	<u>C.7.6.12</u>	U Q
	Specimen	<u>C.7.6.22</u>	C - Required if the Imaging Subject is a Specimen
	VL Image	<u>C.8.12.1</u>	M
	ICC Profile	<u>C.11.15</u>	U
	SOP Common	<u>C.12.1</u>	м
	Common Instance Reference	<u>C.12.2</u>	U
	Stereoscopic Acquisition	C.X.X	C - Required if this flow contains a stereoscopic pair
	Current Frame Functional Groups	C.7.6.X2	RTV Dynamic Payload

COPYRIGHT DICOM® 2018

2018-09-28

Current Frame Functional Groups Module

This Module is placed in every frame, in the RTV Dynamic Payload

Attribute Name	Tag	Туре	Attribute Description
Current Frame Functional Groups Sequence	(hhhh,ee14)	1	Sequence that contains the Functional Group Sequence Attributes corresponding to the current frame or audio sample. Only one Item shall be included in this Sequence.
Frame Origin Timestamp	(hhhh,ee15)	1	This timestamp contains the capture time of the payload content for this frame or audio sample. It is relative to Time Distribution Standard (gggg,ee13).
,		For each IOD that includes this module, a table is defined in which the permitted Functional Group Macros and their usage is specified.	

Example of Functional Group Macro

Real-Time Video Microscopic Image Functional Group Macro

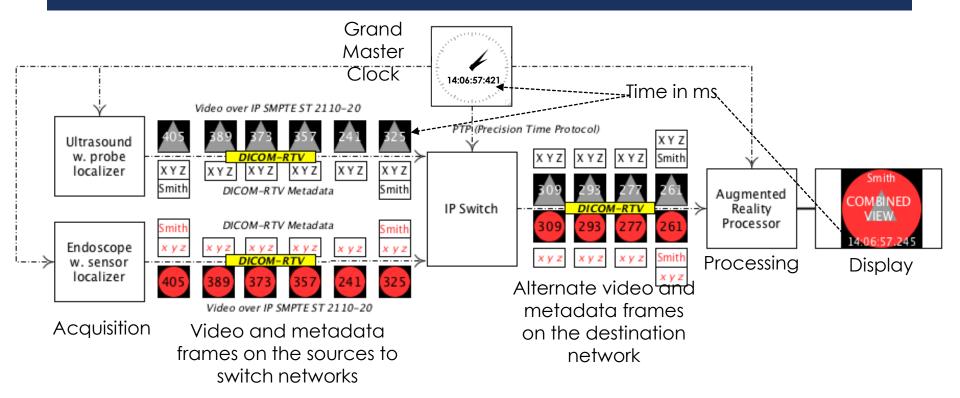
Attribute Name	Tag	Туре	Attribute Description
Light Brightness Ratio	(gggg,ee19)	3	The light brightness ratio, expressed in percentage. See Section C.7.6.X4.1.1 for further explanation.
Focal Distance	(0018,1182)	3	Focal distance of the lens, in mm. See Section C.7.6.X4.1.2 for further specialization.
Zoom Factor	(0028,0031)	3	The amount of magnification applied to each pixel in the image, specified by a numeric pair: row value (delimiter) column value. See Section C.7.6.X4.1.3 for further explanation.

New IODs and SOP Classes

Information Object Definition	Туре	Part
Real-Time Video Endoscopic Image IOD	Composite	<u>PS3.3</u>
Real-Time Video Microscopic Image IOD	Composite	<u>PS3.3</u>
Real-Time Video Photographic Image IOD	Composite	<u>PS3.3</u>
Real-Time Audio Waveform IOD	Composite	<u>PS3.3</u>
Rendition Document IOD	Composite	<u>PS3.3</u>

UID Value	UID Name	UID Type	Part
xxxxxx	Video Endoscopic Image Real-Time Communication	SOP Class	<u>PS3.X</u>
xxxxxx	Video Microscopic Image Real-Time Communication	SOP Class	<u>PS3.X</u>
xxxxxx	Video Photographic Image Real-Time Communication	SOP Class	<u>PS3.X</u>
xxxxxx	Audio Waveform Real-Time Communication	SOP Class	<u>PS3.X</u>
xxxxxx	Rendition Document Real-Time Communication	SOP Class	<u>PS3.X</u>
COPYRIGHT DIC	OM® 2018	2018-09-28	28

Transfer Syntaxes


- Transfer Syntax describes the encoding of the bulk data (video or audio) conveyed in the ST 2110-xx Flow referenced in the DICOM RTV Metadata Flow
- Initially, only uncompressed video is supported
- Will consider compression as ST 2110-xx evolves

- CT 0110 00 / Compressed V/idea Farmertal is in the presses of					
UID Value	UID Name	UID Type	Part		
xxxxxx	SMPTE ST 2110-20 Uncompressed Progressive Active Video	Transfer Syntax	<u>PS3.5</u>		
хххххх	SMPTE ST 2110-20 Uncompressed Interlaced Active Video	Transfer Syntax	<u>PS3.5</u>		
xxxxxx	SMPTE ST 2110-30 PCM Digital Audio	Transfer Syntax	<u>PS3.5</u>		
XXXXXXX	SMPTE ST 2110-30 Digital Waveform	Transfer Syntax			

Digital Imaging and Communications in Medicine

Summary: Example of Endoscopy/Ultrasound AR

Author Contacts

Emmanuel Cordonnier

- emmanuel.cordonnier@b-com.com
- b<>com
 1219 avenue des Champs Blancs
 35510 Cesson-Sévigné
 France

k com

Thank you for your attention!