

DICOM Educational Conference Brisbane, Australia

SEPTEMBER 24-25, 2018

COPYRIGHT DICOM® 2018

DICOM 3D Printing

DICOM Educational Conference September 2018

About Me

- Elliot Silver
 - Sr. Analyst, Standards & Interoperability; Change Healthcare, Imaging & Workflow Solutions
 - Over 12 years in Medical Imaging software product development
 - Co-chair, DICOM WG-20/HL7 II joint workgroup (Integration of Information Systems/Imaging Integration)
 - Contributed to FHIR Imaging resources
 - Past co-chair, IHE IT Infrastructure Technical Committee
 - M.Sc. Computer Science, University of Victoria (Canada); B.Sc. University of Guelph (Canada)

3D Printing

 Many are familiar with home 3D printing

Octocat, Image credit: Allan Noordvyk

3D Printing

- Many are familiar with home 3D printing
- Other fields are seeing benefits of 3D printed components
 - Low volume components
 - Mass customization
 - Tooling & Prototyping

3D-printed titanium parts could save Boeing up to \$3 million per plane

The first common 3D-printed pril 2017 buildings might be army barracks – Fast Company, 14 September 2018

Volkswagen will use 3D printers to mass produce parts – CNN, 11 September 2018

How 3D printing could help save us from trade wars

– CNN, 13 August 2018

https://www.etachaeugra/activational/activ

3D Printing in Medicine

- "Off-the-shelf" low-volume items
- Custom lab equipment
- Patient-matched devices
 - Medical imaging used in design of custom devices

Image credit: Change Healthcare

Uses of 3D Printing and Medical Imaging - Education

- Patient
 - Illustrate condition, diagnosis, or procedure
 - Often as part of obtaining informed consent

Uses of 3D Printing and Medical Imaging - Education

- Patient
 - Illustrate condition, diagnosis, or procedure
 - Often as part of obtaining informed consent
- Practitioner
 - Notable/Teaching cases
 - (General education better handled through other means)

Image credit: A. Alexander, Mayo Clinic

Uses of 3D Printing and Medical Imaging - Diagnosis & Planning

Diagnosis

Image credit: J. Morris, Mayo Clinic

Uses of 3D Printing and Medical Imaging - Diagnosis & Planning

- Diagnosis
- Planning
 - Surgical approach
 - Implant sizing and insertion
 - Surgical tool selection

Image credit: Stars and Stripes

Uses of 3D Printing and Medical Imaging - Diagnosis & Planning

- Diagnosis
- Planning
 - Surgical approach
 - Implant sizing and insertion
 - Surgical tool selection
- Fitting
 - E.g., pre-bending plates

Image credit: J. Morris, Mayo Clinic

Uses of 3D Printing and Medical Imaging - Simulation

- Surgery practice
 - E.g., Insertion of stent in a tortuous vessel
- "Dry run" of complicated cases

Image credit: Change Healthcare

Uses of 3D Printing and Medical Imaging - Instruments/Guides

- Instruments
- Guides
 - Needle, e.g., biopsy
 - Cutting
 - Drilling

Image credits: J. Morris (right), A. Alexander (below), Mayo Clinic

Uses of 3D Printing and Medical Imaging - Implants/Prosthetics

Image credit: Alphaform Instrumentaria

Image credit: J. Morris, Mayo Clinic

Uses of 3D Printing and Medical Imaging - Implants/Prosthetics

Image credit: Yael Maxwell

Image credit: Yong Dawson

3D Printing Workflow

Request	 Practitioner, e.g. surgeon, determines need for a 3D printed model
Image	 Relevant, suitable, imaging located or acquired
Consult	 Technician discusses model requirements and presentation
Segment and model	 Create model from imaging Addition of functional features (separations, sockets) Addition of orientation markings and patient identifiers
Review and Refine	 Virtual model sent for review Model improved based on feedback Add printing supports, determine manufacturing orientation
Print	 Select materials and colors
Clean-up	 Remove printing supports, add magnets, etc. Sterilization

3D Printing is cost effective

- Preparing and printing a 3D model is costly, but...
- ...results in cost reduction through:
 - Reduced operating room time (\$100/min)
 - Reduced materials waste

Potential for a cost savings of \$2,700 when using a 3D-printed model for orthopaedic surgical planning. The savings derives from a reduction in surgery times by 38 to 45 minutes per case through preparation on a 3Dprinted model of the patient's hip joint.

– UCSD and Rady Children's Hospitals (Journal of Children's Orthopaedics)

http://www.bonezonepub.com/1717-3d-study-showscost-savings

Challenges with traditional 3D print workflow

- Patient safety
 - Wrong Patient, Wrong Imaging, Laterality errors
 - Model version issues
 - Scale errors
- Complicated workflow
- File handling
 - Model file naming conventions
 - Model file storage requirements
 - Management of source images
- Protection of patient information

DICOM Encapsulated STL SOP Class (Sup. 205)

- STL is a common 3D model file format
- Modeling software can store models in PACS alongside patient imaging
 - Reduces wrong patient, wrong imaging errors
 - Simplifies workflow by eliminating manual movement of images and models
 - Eliminates need for model file naming, file storage conventions, separate storage

- Source images; frame of reference
- Relationship to patient anatomy (e.g. mirrored, modified)
- Scale
- Intended use (education, implant, etc.)
- Previous model, and reason for refinement
- Thumbnail image for quick view
- Burned In Annotation (0028,0301) now covers embossed/engraved PHI
- Recognizable Visual Features (0028,0302) now covers identifying

Other DICOM 3D Manufacturing activity

- Encapsulation of additional model file types (OBJ, X3D, 3MF)
 - Includes materials and color information
- Reference implementation to wrap/unwrap STLs
- Overlap between 3D Printing and Augmented Reality/Virtual reality

Ask your PACS and Modeling Software vendors about DICOM 3D Model support!

Questions?

