

DICOM Security

Lawrence Tarbox, Ph.D. Chair, WG 14

Mallinckrodt Institute of Radiology Washington University in St. Louis School of Medicine

Security Mechanisms Available in DICOM

- Secure Exchange
 - Communications Channel
 - Media
- Secure Objects
 - Object Confidentiality
 - Digital Signatures
- Secure Infrastructure
 - Audit Trails
 - User Identity Exchange

Secure Exchange

Goals

- Entity authentication
- Data integrity during transit
- Confidentiality during transit via encryption
- Mechanisms
 - Secure Transport Connection Profiles
 - TLS 1.0 (derived from SSL) with 3DES
 - TLS 1.0 with AES
 - ISCL
 - Secure Use Profiles
 - Online Electronic Storage
 - Secure Media Profiles

Security Communication Profiles

ISCL Secure Transport

- Based on ISCL standard (from Japan)
- Symmetric encryption for authentication
- Specified for Online Electronic Storage standard

- TLS Secure Transport
 - TLS 1.0 framework
 - RSA based certificates for peer authentication
 - RSA for exchange of master secrets
 - SHA-1 hash as an integrity check
 - Triple DES EDE, CBC encryption
 - Optional AES encryption (preferred)

AES Secure Transport

- Backwards compatible with the existing profile
 - Request AES encryption, with fallback to Triple DES
- Why AES?
 - Not proprietary
 - Expected to be widely available
 - More efficient that 3DES
 - 10% to 30% of the computation load
 - Possible to encrypt and transmit at 100 Mbit/second without special hardware

What about VPN

No DICOM profile at this time
 But not excluded for *private* networks (local policy issue)

Media Security

Protects entire DICOM files

 Includes DICOM directory
 Files are held inside an encrypted envelope

 Utilizes Cryptographic Message Syntax

 An internet standard

- Only selected recipients can open the envelope
- Data integrity check
- Identifies a single file creator
- Several Secure Media Storage Profiles

Object Confidentiality

De-identificationAttribute-level Encryption

De-Identification

Why?

- Teaching files, clinical trials, controlled access

How?

Simply remove Data Elements that contain patient identifying information?

e.g., per HIPAA's safe harbor rules

But

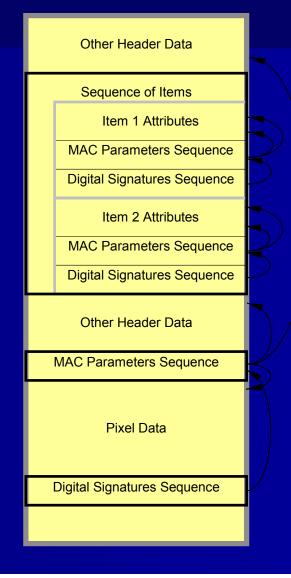
Many such Data Elements are required

So

Instead of remove, replace with a bogus value

Attribute Level Encryption

Since some use cases require controlled access to the original Attribute values:


- Original values can be stored in a CMS (Cryptographic Message Syntax) envelope
 - Embedded in the Data Set
 - Only selected recipients can open the envelope
 - Different subsets can be held for different recipients
- Full restoration of data not a goal

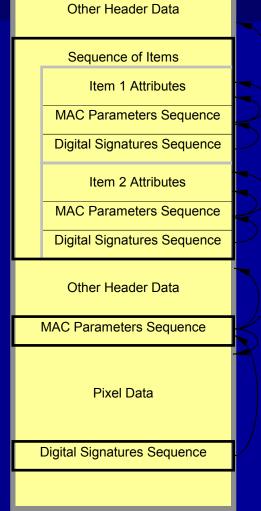
Attribute Confidentiality Profiles

SOP Ins	stance
Example 1 Attributes (unencrypted)	
Encrypted Attributes Sequence	
Item 1 (of n)	
Encrypted Content Transfer Syntax	
Encrypted Content	
Cryptographic Me	essage
<u> </u>	velope
Multical Article Act	_
Modified Attributes Sequence	,
Item 1 (of only 1)	
Attributes to be encrypted	
Item 2 (of n)	
Encrypted Content Transfer Syntax	
Encrypted Content	
CMS envo	elope
Item n (of n)	
Encrypted Content Transfer Syntax	
Encrypted Content Transfer Syntax Encrypted Content	
CMS_prov	elone

Digital Signatures

- Embedded in SOP Instance
- Lifetime integrity check.
- Identifies signer
- Optional secure timestamp
- Multiple signatures
 - Overlapping subsets
 - Multiple signers
 - Signatures on individual items
- Signatures Have Purposes!

Purpose of Digital Signature


- "Purpose" field differentiates between signers (from ASTM 1762 standard), e.g.
 - Author
 - Verifier
 - Reviewer
 - Witness
 - Event
 - Identity
 - Consent
 - Administrative

Signatures Embedded in DICOM

 Selected Attributes within data set

Sequence encoded as a single entity.

Items in a sequence can be signed individually

Current Profiles

Secure Use Profiles

- Base Digital Signatures
 - For legacy systems
 - Verify on input
 - Create new on output
- Bit-preserving Digital Signature
 - Possible future implementations?

Digital Signature Profiles

- Base RSA (referenced by other profiles)
- Creator RSA (typically the equipment)
- Authorization RSA (typically the operator)
- Structured Report RSA

SR Digital Signatures

What is signed?

- SOP Class UID
- Study and Series Instance UID
- All of the SR Document Content Module
- Current and Pertinent Evidence Sequence
- Once "VERIFIED"
 - SOP Instance UID
 - Verification Flag

Amendments are new SOP Instances

Secure References

Objects that are already signed

 Include Digital Signature UID and value

 Objects that are not signed

 Include a secure hash of selected Attributes in the referenced object
 or
 Reference other signed SRs that include

secure hashes of the referenced object

Key Use Case for SR Digital Signatures

How can an application know what objects constitute a complete set?

Key Object Selection Extensions

New Document Titles:

- Complete Study/Acquisition Content
- Manifest
- Related Contend

Allow Key Object Selection Documents to refer to other Key Object Selection Documents (not allowed previously)

Options Considered

Why not MPPS?

- MPPS is not a persistent (composite) object
- MPPS could trigger generation of a signed Key Object Selection document
- Why not Storage Commitment?
 - Did not wish to change semantics some applications currently associate with Storage Commitment

Audit Trail Exchange

- Transmit audit trail data to a collection site
 - Simplifies long term storage
 - Simplifies monitoring and analysis
- Need goes beyond DICOM
 - Joint work HL7, DICOM, ASTM, IHE, NEMA, COCIR, JIRA, others?
 - Common base format
 - Specializations as needed

Lets Clear the Confusion!

- Base XML message format specified (IETF RFC 3881)
 - To be shared by multiple domains
 - Needs vocabulary definition to be useful
 - Transport mechanism blind
- Supplement 95 profiles, augments, and defines DICOM-specific vocabulary
 - Use the schema in Supplement to create messages and read DICOM extensions
 - Audit repositories can interpret key using the schema in the RFC
- Profile mandates Reliable Syslog (IETF RFC-3195)

Background on RFC-3195

 Reliable replacement for BSD Syslog
 Provides BEEP message structure, store and forward transport, common mandatory fields, and an XML payload.
 Options for encryption and signatures.

Level of detail

Surveillance

- Detail on the study level, not individual Attributes
- Designed to detect intrusions

Forensis

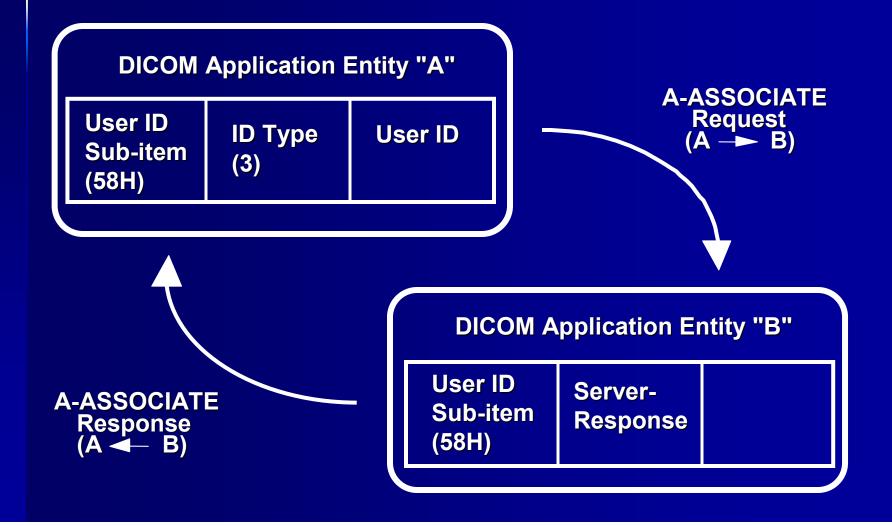
- Could be very detailed

Determine how it happened

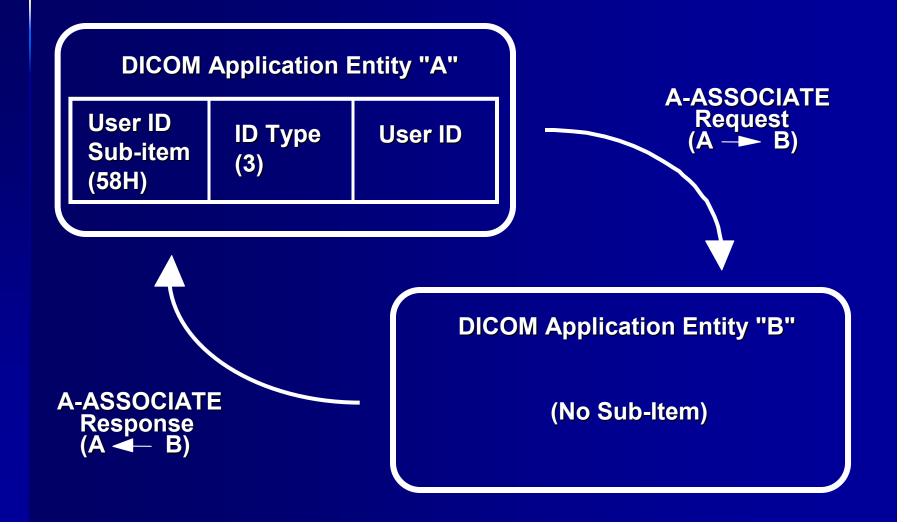
Extended Negotiation of User Identity

 Facilitates audit logging
 Step toward cross-system authorization and access controls

 DICOM still leaves access control in the hands of the application


 Query Filtering

 For productivity as well as security


Several Options

- User identity alone, with no other security mechanisms
- User identity plus the current DICOM TLS mechanism
- User identity plus future lower level transport mechanisms (e.g. IPv6 with security option)
- User identity plus VPN

Extended Negotiation Response Expected

Extended Negotiation No Response Expected

ID Type Profiles

Un-authenticated identity assertion

 Systems in a trusted environment

 Username plus passcode

 Systems in a secure network

 Kerberos-based authentication

 Strongest security

Kerberos

- Kerberos employs a Key Distribution Center (KDC) that
 - Authenticates the user
 - May be incorporated into local login process
 - Provides a Ticket Granting Ticket (TGT) to the local system
- Local application uses TGT to ask KDC to generate the Service Ticket, which then is passed in the Association Negotiation Request
- Remote application uses the Service Ticket to securely identify the user, and optionally generate a Server Ticket that is returned in the Association Negotiation Response

Prepared for the Future

 Could support any mechanism that supports uni-directional assertion mechanism (e.g. using PKI and Digital Signatures)

 Does not support identity mechanisms that require bi-directional negotiation (e.g. Liberty Alliance proposals)

Potential Future Security Topics

- Full user authentication between nodes, key management
- More sophisticated access control support
 - Role-based access
 - Institutional versus personal access
 - Patient authorization
 - List of intended recipients
- Support for new technology and algorithms
- Suggestions for future additions accepted!

We welcome your input!

Thank you.