
Best and Worst Practices -

DICOMweb™

Brad Genereaux

Agfa HealthCare

DICOM WG-27 Industry Co-Chair

@integratorbrad

• 5 seconds to find documentation

• 5 minutes to Hello World

• 5 hours to functional prototype

555 Rule

• Put documentation in an easy-to-reference

place

– i.e., http://{server}/docs

• Implement Service Info transaction

Supporting 5 Seconds to Documentation

• Lay resources out in a logical way

• Use REST simulation tools to access

resources

• Show in your documentation specific URLs

to call

– Suggest appropriate test data

Supporting 5 Minutes to Hello World

• Use test automation to guarantee

consistency

• Ensure compliance to standards

– Participate in WG-31, Conformance

• Be vigilant, yet tolerant (adaptable)

• Use descriptive error codes and payloads

Supporting 5 Hours to Working Prototype

• Consider security throughout the

development process

– Always use HTTPS, even in secured

environments

– See next presentation !

Security

• In your own server/client applications,

utilize the same API methods for

communication rather than developing your

own

• Stronger integration for you, and a battle-

tested API for your consumers

Eat your own dogfood

• Self-documenting

• Nouns in path, verbs by HTTP

• Complexity under the “?”

• Errors use HTTP error code mechanism

• As simple as possible, but no simpler

General REST Best Practices

• Supporting insecure (yet easy) practices

sets a bad precedent, no matter how many

times you say “don’t use in production”

User ID / Password in URL

GET http://server.com/studies/

 ?00100010=DOE^JOHN&user=drjones&pwd=123456

• Consider the following: Client needs to

know patient position on objects within a

series

• WADO-RS call:
{s}/studies/{studyUID}/series/{seriesUID}/

 metadata

• QIDO-RS call:
{s}studies/{studyUID}/series/{seriesUID}/

 instances/?includefield=00185100

Asking for too much

• Clients need to know what’s happening;

make sure to use the right error code

• Even worse, reporting OK when there was

an error condition might mislead clients

Incorrectly supporting errors

• Think it’s a good idea for adoption? Bring it

to the standards organizations

– If it is structural, bring it to DICOM WG-27

– If it is profiling (i.e., workflow), bring it to IHE

RAD

• If you’re going to do it anyway

– Model (where possible) on existing standards

– Refer to general REST best practices

Avoid Proprietary Extensions

Software Development Tools -

DICOMweb™

Brad Genereaux

Agfa HealthCare

DICOM WG-27 Industry Co-Chair

@integratorbrad

• Any tools I mention are not an official

endorsement nor am I under any fiduciary

relationship with any of these companies

Disclaimer

• Playgrounds

• Editors

• Scaffolding

• Builders

• Testing

• Other Useful Tools

Tools of the Web Developer

• Postman

• Curl

• JSFiddle

• CodePen

Playgrounds

• Integrated Developer Environment (IDE)

– Eclipse

– Netbeans

– IntelliJ

– Visual Studio

• Lightweight Editors

– Sublime

– Notepad++

Editors

Scaffolding

• Tools that will lay out your
project (i.e., directory
structure).
– Yeoman: Web applications

– Maven: Java applications

– Nuget: .Net applications

• Dependency
management comes into
play
– Bower, NPM, require.js

• Tools that compile, test
(via automation) and
preview your
application
– Grunt

– Gulp

– Ant

• Many helpers run as
part of the build process
– JSLint / JSHint

– Minify (JS / CSS)

– Uglify

Builders

• Karma: Testing framework

– Jasmine / Mocha / QUnit

• PhantomJS: Headless website testing

• Selenium: Browser automation

– SauceLabs: Cloud-based browser testing

Testing

• Code repositories

– GitHub / Bitbucket

• Virtual server environment

– Virtual Box

– Docker, Vagrant

• Troubleshooting

– Chrome development tools

– Postman

– Fiddler / Firebug

Other Useful Tools

• Available open-source server libraries

– dcm4chee

– Orthanc

• Available open-source client libraries

– Cornerstone

Great resource: https://github.com/chafey/dicomWeb

DICOMweb™ Specific Tools

• dcm4chee

https://github.com/mohannadhussain/dcm4

chee4-quick-start-vagrant

• Orthanc

https://github.com/chafey/orthanc-vagrant

DICOMweb™ Vagrants

https://github.com/mohannadhussain/dcm4chee4-quick-start-vagrant
https://github.com/mohannadhussain/dcm4chee4-quick-start-vagrant
https://github.com/mohannadhussain/dcm4chee4-quick-start-vagrant
https://github.com/mohannadhussain/dcm4chee4-quick-start-vagrant
https://github.com/mohannadhussain/dcm4chee4-quick-start-vagrant
https://github.com/mohannadhussain/dcm4chee4-quick-start-vagrant
https://github.com/mohannadhussain/dcm4chee4-quick-start-vagrant
https://github.com/mohannadhussain/dcm4chee4-quick-start-vagrant
https://github.com/mohannadhussain/dcm4chee4-quick-start-vagrant
https://github.com/chafey/orthanc-vagrant
https://github.com/chafey/orthanc-vagrant
https://github.com/chafey/orthanc-vagrant
https://github.com/chafey/orthanc-vagrant

