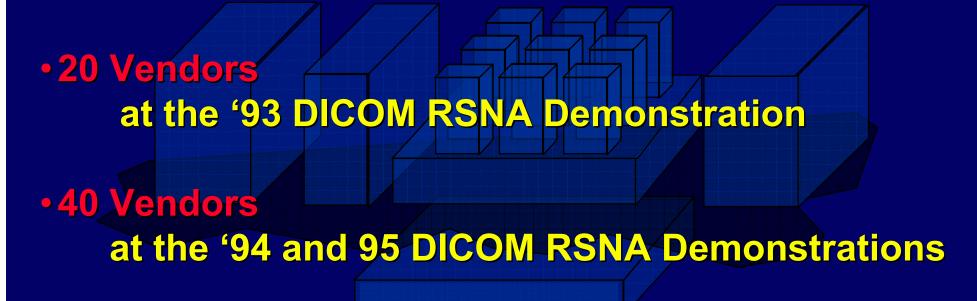


DICOM Exchanging Imaging Data

Modality Images (and other types of objects) Finding and Retrieving Objects


Charles Parisot – Harry Solomon

DICOM Conference 2005 - Budapest

DICOM...

Is a GLOBAL STANDARD of Communication, developed under joint efforts of **ACR** (American College of Radiology) **NEMA** (National Electrical Manufacturers Assoc.) **ESC** (European Society of Cardiology) **ACC** (American College of Cardiology) **SFR** (Société Française de Radiology) **DRG** (Deutsche Röntgengesellschaft) **AAO** (American Academy of Ophthalmology) **AAD** (American Academy of Dermatology) **CAP** (College of American Pathology) JIRA (Japanese Radiology Vendors Association) **COCIR** (European Radiology Vendors Association) And 25 plus vendors.....

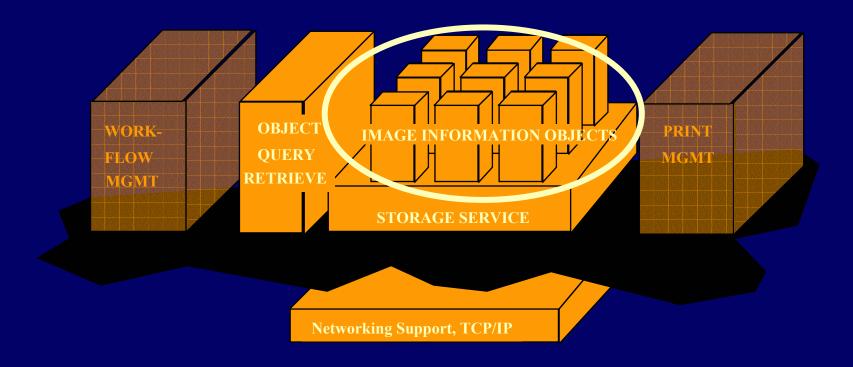
DICOM first release approved October '93

More than 100 Vendors at RSNA 96

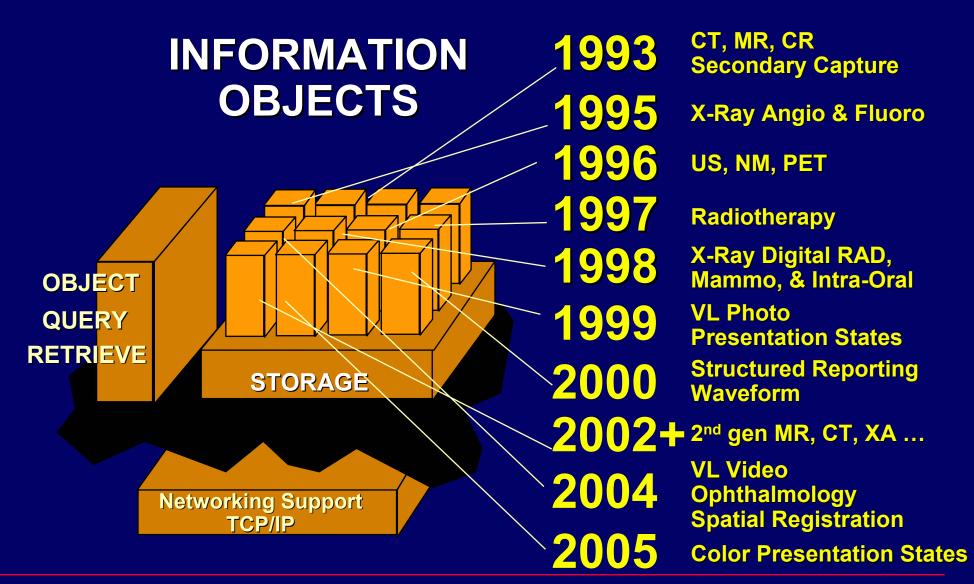
Since 1997 – Too many implementations to count!

Google® over 2,000,000 references

DICOM documents updated yearly


DICOM 2004 is a <u>compatible extension</u> of DICOM 2003 + 119 Clarifications/Changes + 25 Supplements

Available for free from the DICOM website: dicom.nema.org


But DICOM 3.0, DICOM 96, DICOM 98, DICOM 99, DICOM 2000 DICOM 2003 are only document publishing names.

This has no direct impact on existing Product Conformance!

DICOM for Image Transfer

DICOM Spans Most of Medical Imaging

DICOM Spans Most of Medical Imaging

DICOM transfers not only	1993	CT, MR, CR Secondary Capture
Images, but also:Therapy Plans, Structures, etc.	1995	X-Ray Angio & Fluoro
- Waveforms- Structured Documents and Reports	1996	US, NM, PET
- Image Controls and Relationships 1	1997	RadioTherapy
DICOM transfers not only	1998	X-Ray Digital RAD, Mammo, & Intra-Oral
	1999	VL Photo Presentation States
Cardiology (X-Ray Angio, US, NM)Oncology (RT Portal images, fused CT/PET)	2000	Structured Reporting Waveform
- Dentistry (X-ray Intra-Oral)	2002+	2 nd gen MR, CT, XA
OphthalmologyEndoscopy, Pathology, Microscopy, etc.	2004	VL Video Ophthalmology Spatial Registration
2	2005	Color Presentation Sta

ites

Information Object Definitions

Patient Information

Study Information

Series Information

Image Information

Patient Module General **Patient** Study Study Module Module General Frame of General Reference Series Equipment Module Module Module **Image** Contrast/ General **Image** Plane Bolus **Pixel** Image Module Module Module Module

Modality

Specific

SOP

Common

Modules Modules

Patient's Name

Patient's ID

Patient's Birth Date

Patient's Sex

Referring Physician's

Name

Accession Number

Study Instance UID

Patient's Weight*

Not only contains pixel data but also key information about the image

Multi-

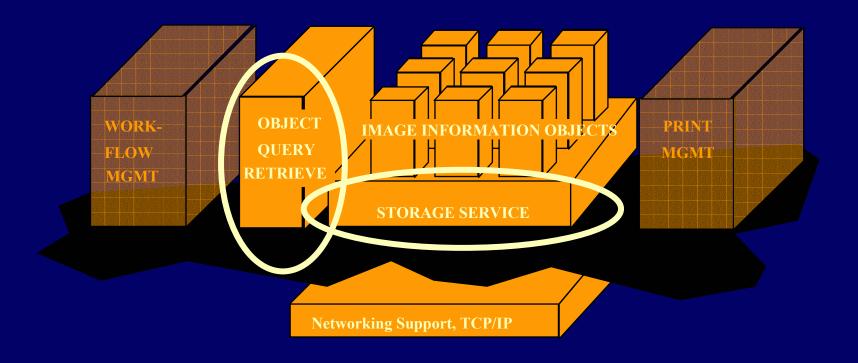
Frame

Modules

Overlay

& LUT

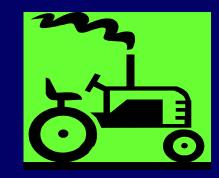
Modules



Non-Image Information Objects

- Other types of modality data
 - Waveforms: ECG, Hemodynamic, Electrophysiology, Audio
 - Spectroscopy
 - Radiotherapy: Plans, Treatment Records
- Structured data
 - Evidence Documents: Measurements, Analyses, Logs, CAD Results
 - Key Object Selection: Notes, Manifests
 - Structured Reports
- Presentation controls
 - Image Presentation States: Grayscale, Color, Blending
 - Inter-image Relationships: Spatial Registration, Fiducials, Stereometric

General term: Composite Information Objects
Almost as many non-image as image IODs!

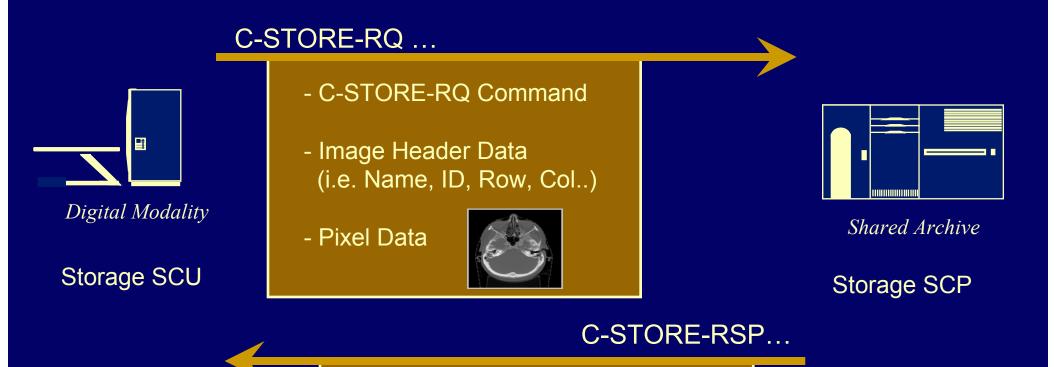

DICOM for Image Transfer

Service Object Pair (SOP) Class

Image Info. Obj. (the Data)

Store Command (the Service)

DICOM
Communication
(SOP Class)


- CR Image Storage SOP Class
- CT Image Storage SOP Class

Storage

- Send/Receive (i.e., push images on the network)
- SOP Class dependent on IOD
 - CT, MR, US, CR, X-ray, Secondary Capture, RT, NM, Structured Report... (i.e. not only images)
- How the SCP stores the image is not defined by DICOM (i.e., storage of all data not guaranteed)
- May send a study via multiple network associations (connections)
- May send more than one study on an association

DICOM does NOT define a "one size fits all" image

Storage Transfer – Push Images

Multiple transfers usually occur on the same association

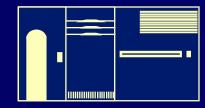

-C-STORE-RSP Command (Status)

Query/Retrieve

- Typically used by workstations for remote access and image retrieval from archives
- Simple queries such as "give me the patient name and ID for studies performed today"
- Simple retrievals such as "give me all images for Study XYZ"
- Based on information models
 - Patient model, Study model and Patient/Study only

Enables the "pulling" of images

Query Remote Device


Retrieve – Pull Images

C-MOVE-RQ

-C-MOVE-RQ Command

- Study Inst UID for images to pull.

Shared Archive

Retrieve SCP

Retrieve SCU

C-STORE-RQ Separate association from C-Move

C-STORE-RSP

(Typically for Multiple Images)

Same association as C-Move-RQ

C-MOVE-RSP

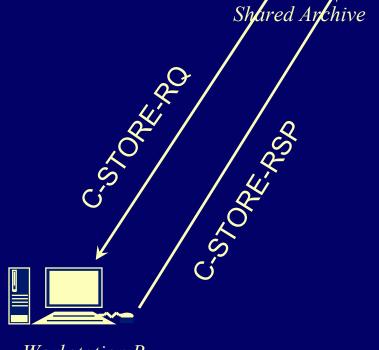
-C-MOVE-RSP Command (Status)

- -Request Move "Pull" of images
- -Archive opens second association to send images (the roles change for storage)
- -Response on same association as C-Move-RQ

Three Device Move

Retrieve SCU

C-MOVE-RQ


After the image transfer completed

C-MOVE-RSP

- Retrieve SCP

Shared Archive

- -A requests the Move of images to B
- -Archive opens second association to B
- -Archive sends images to B then closes assoc
- -Association between A and archive open during image transfer
- -Archive provides final Move-RSP status to A
- -All Retrieve SCPs required to support the **Three Device Move**

Workstation B

Storage SCP

Verification

- "Echo" to verify application level communication between two DICOM products
- Often used for service diagnostics to determine if another product is on-line or off-line
- Products that accept DICOM associations are required to support Verification as an SCP

Compression and Transfer Syntaxes

- DICOM treats image compression as a separate run-time negotiable aspect of image transfer
 - SCU and SCP agree on acceptable combinations of SOP Class and compression transfer syntax
 - Rules for default transfer syntax
- Currently approved compression transfer syntaxes:

JPEG Lossless JPEG Lossy (8-bit and 12-bit)

JPEG-LS Lossless JPEG-LS Lossy (Near-Lossless)

JPEG 2000 Lossless JPEG 2000 Lossy

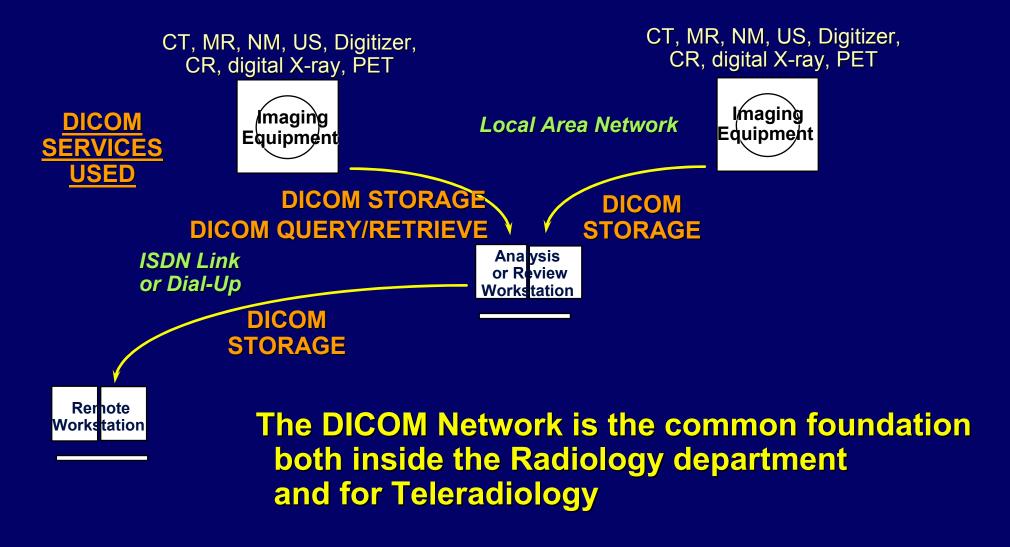
JPEG 2000 Part 2 Multi-component Lossless

JPEG 2000 Part 2 Multi-component Lossy

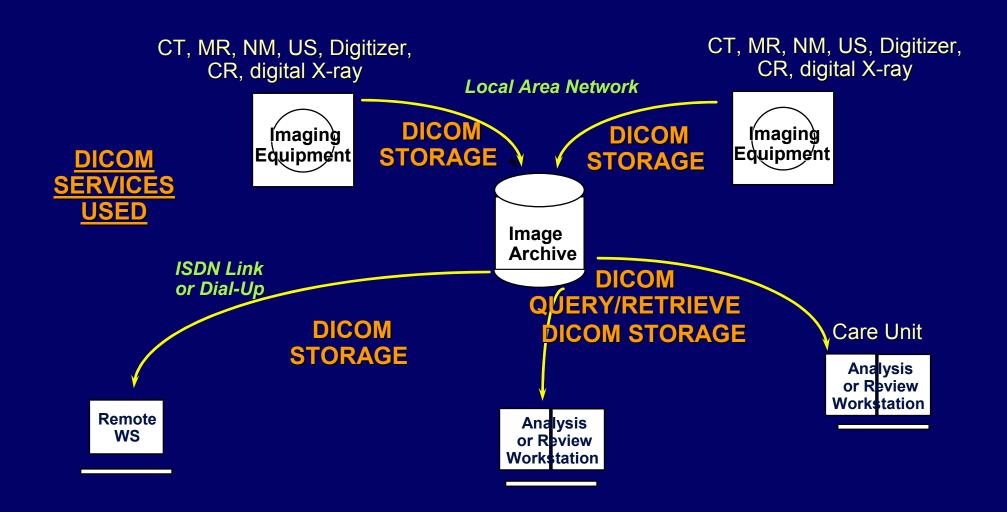
MPEG2 MP@ML

Run Length Encoding (Lossless)

Deflate (ZIP - Lossless)



What should I do to build a DICOM Image Transfer Network?


Three Steps:

- 1 Clarify my Clinical Needs for Image Transfer and Image Processing Applications
- 2 Match Those Needs with DICOM Service Classes using the DICOM Conformance Statements
- 3 Validate the Imaging Application Interoperability

Simple Networks in Radiology and Teleradiology

Networks in Radiology and Care Units with Central Archiving

Step 2 - Compare DICOM Conformance Statements

1-CT STORAGE SCU

2-QUERY SCP

3-RETRIEVE SCF

4-MODALITY WORKLIST SCU

SCU = Service Class USER

SCP = Service Class PROVIDER

Workstation
Conformance Statement

1-CT STORAGE SCP

2-QUERY SCU

3-RETRIEVE SCU

4-MR STORAGE SCP

5- BASIC PRINT SCU

Matching DICOM Service Classes
The necessary step to find what will work

Conformance Statement Matching

- SOP Classes fundamental
- Transfer Syntaxes essential if you want to use compression
 - Used extensively in Ultrasound
- Supported Query Keys ensure you can find what you are looking for
 - Note: IHE has specified an expanded set of query keys (beyond the default minimum) to facilitate robust operation

WHERE WE ARE NOW

- After 12 years, DICOM is universally accepted as the only global standard for medical image exchange
- On-site installation of DICOM image transfer is nearly plug-and-play (aside from address set-up – and we're working on that!)
- DICOM has established the market for PACS and digital imaging