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Importance of ECG Data

ECG (Electrocardiogram) is a fundamental diagnostic tool in Cardiology. It records the electrical activity of the heart
and helps in diagnosing various heart conditions. In the digital age, the need to store, retrieve, and analyze

ECG data efficiently is paramount. DICOM provides a standardized format for medical images, including ECGs,
ensuring interoperability and data integrity.

Storing and Retrieving DICOM Encapsulated ECGs

DICOM allows for the encapsulation of ECG data, enabling healthcare organizations to store and manage ECGs
alongside other medical imaging data. This standardized format ensures data consistency and simplifies data
management.

*DICOM headers store patient information, acquisition details, and more.

*Encapsulated ECGs can be linked to patient records for easy retrieval.

Challenges and Opportunities While storing and retrieving DICOM encapsulated ECGs is essential, the real power

lies in leveraging this data for improved patient care. Machine learning offers exciting opportunities for analysis and
prediction based on ECG data.

(This presentation contains Confidential Information which is a sole property of Apollo Hospitals and should not be shared / printed / referred unless authorized)
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#1 - Machine picks from an ECG
(As per Standard Communication Protocol) —

e HFrEF/HFpEF/HEmMrEF (Abnormal) vs Normal ECG
(Propensity Matched)

* Differences in the wave / rhythm / rate patterns
of HFrEF-HFpEF-HEmrEF vs Normal ECG

#2 — Attributes for Heart Failure LLM
1) Echo- EF->45% Ejection Fraction

2)  Current Clinical Data - NYHA — Upgrade
(Clinical Data) — Vitals + Comorbidities

3) Lab Marker —raised enzyme levels (pro BNP)
4) Medications
5) Reuvisit Longitudinal Data

Comparative Arms Only

Normal

HErEF | HEmrEF

J\Az

End Goal is for Al Model for Predicting HFpEF in next 5 years
Risk of HFpEF in 1, 2, 3 & 5 Years

Medical record

D)

Clinical Decision Support
Lifestyle Modification
Heart Failure Registry
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We have been able to convert the whole ECG to near accuracy in tabular format. We have developed this as a home-
grown API and converted at least 10K of Longitudinal Normal ECGs vs Abnormal ECGs (Heart Failure) — which is used to
predict HF detection. The hazard model (time to event) model (predicting future heart failures) is in pipeline
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ECG Al Assessment APOHO

Uploaded DICOM Image

Value Capture: Deployment
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ECG Al Assessment
Al Generated Report

Based on the provided ECG report, here is the summary of the \
findings
¢ Full PR—. A”Full PR interval” suggest that the electrical
signal is traveling through the heart’s conduction at a
normal speed.
Occasional VPCs — The term occasional beats indicates that
these premature beats are infrequent and not
continuously present
Poor R wave progression — V1 to V3 — This suggest that
normal progression of the R wave is not observed

A O“O INDIA’S FIRST Doctor Consultation
CUSTOMISED r‘..'Io Qur expert can help make an accurate

) | | M
F) ro e a | t h Al pow E RE D aka “ diagnosis and suggest the best treatment
i plan to make you feel better.
Predict. Prevent. Overcome

“FOR Al_l_ NOTHING SAYS IT BETTER THAN
THE,TIMES YOU'VE
#HAD MY BACK”

HEALTH PROGRAM

Consult Heart Failure Clinic

(This presentation contains Confidential Information which is a sole property of Apollo Hospitals and should not be shared / printed / referred unless authorjzed)
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Early Warning Systems ER Triage to ICU
Wards / Telemetry

Pre-Anesthesia Algorithm Discharge in 24/48 hours

* Risk Assessment tool for
surgeries

* Tool to help recognize early
signs of clinical deterioration

* |dentifies patient that could
possibly transfer to ICU from

* Predicts probability of patient
discharge in the next 24/48

Clinical Needs | ¢ Egtimates surgical duration, and trigger more intensive ER hours
blood loss and post operative care * Risk of mortality in next 7 to 28 1 ® Use of Generative Al +
patient placement * Prediction of Mortality | Risk days Differentiated Database in

Stratification | SHAP values |
Advice for monitoring

building Discharge Summaries

* |dentifies patient that could
possibly transfer to ICU from
ER — Over 5K Data

* Prototype Research -

* 145K Critical Patient
(Anonymized) Data

* Biphasic Model - Vitals +

* Collaborative Model with
leading Organization

* 160K Patient Data

* 347K Surgeries
* 8 locations
¢ 500+ surgery types over 18

Design &
Development

months Clinical Features + Lab Data = e Business Process Re-
XGBoost + Nested BERT https://www.nature.com/article engineering
s/s41598-021-92146-7
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Heart Failure Registry

IMAGE ANALYTICS : DESIGNING THE ECG STORAGE, Al-ML WORK IN HEART FAILURE &m
CONCEPT DESIGN — HEART FAILURE INNOVATION CAPSULE

Outcomes :

Predictive models based on complex algorithms to streamline HF

Collect data from multiple patients/scenarios: care delivery | Risk stratification |Readmission rates reduction

*Episodes ID, date infout, inpatient/outpatient, Methods:

acute/non-acute, diagnosis codes during episodes Proactive diagnosis/risk scoring Outcomes :

(ICD), procedure codes during episodes (ICD), age, Control over outcomes Reduced acute and emergency room visits
gender, costs registered during episodes Risk stratification | More accessible healthcare for patients
*Tune the predicting models to obtain an accurate patients discharge streamlined (visits, phone, or videoconference) |

bus:’n:sumlzmchcznhlmwmwm Stronger network around the patient
senskivity anolysi through close collaboration with clinics
Outcomes An efficient bridge between inpatient
Better planning and coordination and oubm:t'an where patients
Lower costs for the clinics with heart failure who had just been
Safer and more involved families released quickly get the spedialized
*Identifying the owners of the Lower flexible staffing care they need

patient at the different stages Optimize bed planning

*Identifying what should be Improved patient quali

coordinated within the hospital of life ” - Review of care programs, anc
*Multidisciplinary steering referral paths

committees rral tools
*Collaboration/education Development of digital refe

Manage resource allocation:  Optimal
coll workshops,
among colleagues ( PS use of facilities » Optimal use of experts

lectures, training courses,

information sessions, etc.) Creation of a patient flow manager Building Capability fc
Determine the care management: how patients are diagnosed, treated, and Heart Transplant
monitored.
Determine the use and role of the emergency department (ER)
Determine the use and role of external care providers (primary care, etc.) Respiratory Clinics — COPD / LD - for Heart Lung m
Determine the levels of extended care and treatment - *Work environment End Stage Renal Di Qlinic
« Level of compliance with: a) evidence based care; b) guidelines » Level of Breast & Lung Cancer Clinics

communication with patients and care providers * Access from patients to

hospial resources (outpatients, €A, etc)  drsuiov k@anotobasoiaiscom VI HF INNOvation Capsules
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DIFFERENTIATED
DATABASES

Generative Al in
Healthcare is as good I
as curated content
that you can build &
provide as prompt

PROMPT
BRITTLENESS

Variation in Prompt
m Syntax - change in
wording, ordering, or
selection of examples -
make it unpredictable &
unreliable

How is the experience with
Generative Al???

HALLUCINATION

Fluent and Natural
generated texts which
are unfaithful and / or

undetermined.




Thanks Any Questions?



