

Integration and Implementation Strategies for Al Algorithm Development, Deployment and Enhancement using DICOM and Other Standards

Presentef by: Barbaros Selnur Erdal, DDS, MS, PhD Mayo Clinic, Florida, USA

Integration and Implementation Strategies for AI Algorithm Development, Deployment and Enhancement using DICOM and Other Standards

¹ Barbaros Selnur Erdal, ²Brad Genereaux, ¹Vikash Gupta, ³Alexis Lagurette, ¹Kim H. Fair, ³Mathis Zimmerman, ¹Mutlu Demirer, ³Tom O'Donnell, ¹Richard D. White

¹ Department of Radiology, Mayo Clinic Florida ² NVidia ³ Siemens Healthineers

Master Research Agreement: Mayo Clinic - Siemens

MAYO CLINIC

Master Research Agreement: Mayo Clinic – NVidia

https://monai.io/

Steps	Common Workflow Theme	AIW and AIR Described Boundaries
1	When a clinician orders an imaging examination in the HIS/RIS, they may be guided by a CDSS to ensure its appropriateness. Depending on the clinical setting, the order may contain a clinical-status priority code (e.g., "stat")	Make recommendations as to the types of procedures that should be ordered, based on the patient's condition and record.
2	Once the patient examination is scheduled for a date and location, an entry is created on the "study worklist" of the scanner (or another imaging device). In some instances, an entry is also created on a "protocoling worklist", where a radiologist determines the specific imaging techniques to be used (e.g., scanning details, contrast-agent type/amount/administration route) during the diagnostic imaging study or image- directed procedure.	Make recommendations on the type of protocol to be used on the scanner.
3	Once the examination is completed, images are reconstructed into a human- interpretable format and sent to a DICOM-router to be forwarded to the appropriate destinations, including a PACS and/or VNA for management or storage. Once the organized images (original and/or post-processed) are ready to be evaluated by the radiologist, the examination description appears on the radiologist's "reading worklist".	Post-process the image, identify QA issues prior to the patient leaving the department, and prepare classifications and segmentations in advance of the radiologist's evaluation.
4	Radiologists assess the examination images on their diagnostic viewer and dictate their interpretation (typically into a voice recognition system).	Include insights alongside the images in the radiologist's display.
5	The dictated report is sent to the HIS/RIS. If actionable critical and/or non-critical findings are identified, radiologists may invoke additional workflows to alert the ordering clinician and issue the final examination report.	Include emergent insights for consideration of the ordering physician.
6	Final examination reports become available in the HIS/EHR, along with the images in the PACS or clinical viewers.	Pre-populate the radiologist's report with draft insights to be considered by the radiologist.

St

In-house Development (within Firewall)

Vendor Integration (Cloud)

 $\overline{\mathbf{U}}$

```
AI-Results-Handling (Image Studies)
         Check each exam for matching exam descriptions
         If (matching exam found) {
         /*LB and STP Running inside the institutional firewall*/
         LB to STP
         STP to De-identify the studies
         /*AIRC Running outside the institutional firewall*/
         STP to send studies to AIRC
         /*Results in the form of DICOM SC and DICOM SR*/
         AIRC to return results to STP
         STP to Re-identify the studies
         STP to Return Results to LB
         LB to Forward the DICOM SC and DICOM SR to Viewers
         /*Using Custom C# based DICOM SR parsing to produce an XML template to
         provide mapping during HL7 conversion by LB*/
MAYO
CLINIC
         LB to Produce HL7 from DICOM SR
         LB to Send HL7 message to Interface Engine for HIS for Prioritization
```


Reading Worklist Prioritization

MSH|^~\&|AI Product Name{AIRC}|HIS{HIS_TEST}|||Timestamp||ORM^001|GUID|T|2.5.1
PID|||patient ID^^^MC^MC||Patient last name^Patient first name||Patient DoB
ORC|XO|||||||Datetime of transaction
OBR|1||Accession number|Study code^Study description^IMAGEID^^Short study
description||Study Date|||||||||||Study Date
OBX|1|ST|AI_PRIORITY_type of evaluation{AI_PRIORITY_PTX}||priority level{HIGH}
OBX|2|ST|AI_DETECTION type of evaluation{AI_DETECTION PTX}||detection{POS}

P l	L R I	P C	S	Ε	Appt Date	Appt Ti	AI	Patient	MRN	Accession #	Procedure (Pref List Name)
4		Å	0	0	4/11/23	1:10 pm		Ai, Ben	11-261-324	321137	DX Chest 1 View
4		R	۲	۲	4/11/23	1:10 pm		RSA-FLA, Tito X	11-261-700	321136	DX Chest 1 View
4		Å	0	۲	4/11/23	12:55 pm	A	RSA-FLA, Mercades X	11-261-696	321135	DX Chest 1 View
4		Å	0	0	4/11/23	3:50 pm		FLA, Test	11-240-813	321147	US Chest

Confidence: 7.22 Area: 747.19 mm¹ Mean: 5:247.31 Std Dev: 65.40 Label: PPM Micra Confidence: 0.14

Daily Activity (Sample Period)

Result of Processing	Count	% of Total Images Received by AIRC	Average # Images Received per Day	Comments
Processed Successfully	22,382	97.80%	154/day	Results available within 3 minutes after image reception by TPR
Failed Processing (No Results Created)	2	0.01%	<<1/day	
Unsupported Input (No Results Created)	501	2.19%	3/day	Reasons include unsupported image types, patient demographics (age), other check on DICOM attributes
Total Number of Images Received by AIRC	22,885	100%	158/day	Corresponding to 113 individual exams/day

Editable Results

Multiple Algorithms

Local Development

Vendor Based

Standards-based inference result production (e.g., as IHE-compliant DICOM SR TID1500), as well as result consumption by downstream applications, is possible. These capabilities could enable medical institutions to:

- Gain control over AI results with which they interact (e.g., by providing edit/delete functionalities in appropriate viewing environments, therefore enabling adjudication of AI results).
- 2) View and interact with AI results from different sources (e.g., vendor-provided or locally developed algorithms)
- 3) Influence their reading workflow, if products cleared for that purpose are used (e.g., to flag time-sensitive cases in their worklist to promote timely reading and reporting). This could happen either by using middleware (parsing information from standard formats to transmit data points to a HIS/RIS worklist into a specific message format), as shown in examples here, or by relying on existing functionalities of the HIS/RIS to ingest IHE-AIR-compliant datapoints.

Questions?

Contact: Barbaros <u>Selnur</u> Erdal, DDS, MS, PhD Email: <u>Erdal.Barbaros@Mayo.Edu</u>

