

Digital Imaging and Communications in Medicine (DICOM)

Supplement 224: Service Discovery and Control

Prepared by:

DICOM Standards Committee, Working Group 23: Artificial Intelligence/Application Hosting

1300 N. 17th Street, Suite 900

Rosslyn, Virginia 22209 USA

Status: Version 2, March 25, 2021

Developed pursuant to DICOM Work Item 2020-08-A

 Template for DICOM
 Page 3

Table of Contents

Document History ... 8
Open Issues .. 8
Closed Issues ... 8
1. Scope and Field of Application .. 8
2. Normative References ... 9
3. Definitions .. 9
A. Service Discovery and Control Overview .. 10

A.1 Manifest Structure Overview – YAML .. 10
Figure A.1 Manifest Structure .. 10
Table A.1 Manifest Sections .. 12

B. Resources .. 12
B.1 Resource Schemas ... 12

Table B.1 Resource Schema Attributes .. 12
B.1.1 Resource Metadata .. 13

Table B.1.1 Resource Metadata Schema Attributes .. 13
B.1.1.1 Labels ... 13

Table B.1.1.1 Metadata Labels Schema Attributes ... 13
B.1.1.1.1 Example Labels .. 13

B.1.1.2 Annotations ... 14
Table B.1.1.2 Metadata Annotations Schema Attributes ... 14

Table B.1.1.2.1 Recommended Metadata Annotations 14
B.1.1.2.1 Example Annotations .. 14

B.1.2 Example Resource Instance .. 14
B.2 Resource Definition Schema ... 15

B.2.1 Example Resource Schema Definition: ... 15
B.3 Resource Requirements for DICOM Compliance.. 16

Table B.3 Resource Requirements for DICOM Compliance ... 16
B.4 Defining Unique Resources ... 17

B.4.1 Scope Specifications .. 17
B.4.2 Trait Specifications ... 17
B.4.3 Component Workload Specifications ... 17

B.5 Definition Reference .. 17
Table B.5 Definition Reference Attributes ... 18
B.5.1 Resource Reference .. 18

Table B.5.1 Resource Reference Attributes ... 18
B.5.2 Example Definition Reference ... 18

C. Scopes ... 18
C.1 DICOM Standardized Scope Definition Schemas ... 18

C.1.1 DICOM Operation Scope Schematic ... 18
Table C.1.1 DICOM Operation Scope Attributes .. 19
C.1.1.1 DICOM Operation Types .. 19
C.1.1.2 Example DICOM Operation Scope Definition .. 19

D. Components .. 20
D.1 Component Specification... 20

Table D.1 Component Attributes ... 21
D.1.1 Workload .. 21

Table D.1.1 Component Workload Attributes ... 21
D.1.1.1 Definition .. 21

 Template for DICOM
 Page 4

Table D.1.1.1 Workload Definition Attributes ... 21
D.1.1.2 Applicable Traits ... 21

Table D.1.1.2 Workload Applicable Traits Attributes ... 21
D.1.2 Template .. 22

Table D.1 2 Component Schematic Attributes ... 22
D.1.3 Example Component Specification .. 22

D.2 Component Workloads .. 24
D.2.1 Containerized Workload Type Settings ... 24

Table D.2.1 Containerized Workload Attributes ... 24
D.2.1.1 Container .. 25

Table D.2.1.1 Container Attributes ... 25
D.2.1.1.1 Resources 26

Table D.2.1.1.1 Container Resources Attributes ... 26
D.2.1.1.1.1 CPU ... 26

Table 2.1.1.1.1 Container Resource CPU Attributes 26
D.2.1.1.1.2 Memory .. 26

Table 2.1.1.1.2 Container Resource Memory Attributes 26
D.2.1.1.1.3 GPU ... 27

Table 2.1.1.1.3 Container Resource GPU Attributes 27
D.2.1.1.1.4 Volume ... 27

Table 2.1.1.1.4 Container Resource Volume Attributes 27
D.2.1.1.1.4.1 Disk ... 28

Table 2.1.1.1.4.1 Volume Disk Attributes .. 28

D.2.1.1.1.5 ExtendedResource .. 28
Table 2.1.1.1.5 Container Resource Extended Resource Attributes 28

D.2.1.1.2 Env 29
Table D.2.1.1.2 Environmental Variable Attributes .. 29

D.2.1.1.3 ConfigFile 29
Table D.2.1.1.3 Configuration File Attributes ... 29

D.2.1.1.4 Port 29
Table D.2.1.1.4 Container Port Attributes .. 30

D.2.1.1.5 HealthProbe30
Table D.2.1.1.5 Health Probe Attributes ... 30

D.2.1.1.5.1 Exec ... 31
Table D.2.1.1.5.1 Health Probe Command Execution Attributes 31

D.2.1.1.5.2 HTTPGet .. 31
Table D.2.1.1.5.2 Health Probe HTTP Get Attributes ... 31

D.2.1.1.5.2.1 HTTPHeader ... 31
Table D.2.1.1.5.2.1 HTTP Get HTTP Header Attributes .. 32

D.2.1.1.5.3 TCPSocket ... 32
Table D.2.1.1.5.3 Health Probe TCP Socket Attributes 32

D.2.1.2 Containerized Workload Example .. 32
D.2.2 DICOM Server Workload Type Settings .. 33

Table D.2.2 DICOM Server Workload Attributes .. 34
D.2.2.1 Dicom Server Workload Example .. 34

D.2.3 DICOM Task Workload Type Settings ... 35
Table D.2.3 DICOM Task Workload Attributes ... 35
D.2.3.1 Command ... 35

Table D.2.3.1 Task Workload Command Attributes .. 35
D.2.3.2 Example DICOM Task Workload ... 35

D.3 Parameter .. 36

 Template for DICOM
 Page 5

Table D.3 Parameter Attributes ... 36
E. Traits .. 37

E.1 Control Traits ... 37
E.1.1 DICOM Job Timeout Trait Schematic .. 37

Table E.1.1 DICOM Job Timeout Trait Attributes ... 37
E.1.2 DICOM Audit Trail Trait Schematic .. 37

Table E.1.2 DICOM Audit Trail Trait Attributes ... 38
E.1.3 DICOM Time Sync Trait Schematic ... 38

Table E.1.3 DICOM Time Sync Trait Attributes .. 38
E.2 Entrypoint Traits ... 39

E.2.1 DICOM Application C-Store Provider Trait Schematic... 39
Table E.2.1 DICOM Application C-Store Provider Trait Attributes 39

E.2.2 DICOM Application C-Store User Trait Schematic .. 40
Table E.2.2 DICOM Application C-Store User Trait Attributes 40

E.2.3 DICOM Application WADO User Trait Schematic.. 41
Table E.2.3 DICOM Application WADO User Trait Attributes 41

E.2.4 DICOM Application STOW Provider Trait Schematic .. 42
Table E.2.4 DICOM Application STOW Provider Trait Attributes 43

E.2.5 DICOM Application STOW User Trait Schematic .. 43
Table E.2.5 DICOM Application STOW User Trait Attributes 44

E.2.6 DICOM Operator Input Trait Schematic ... 44
Table E.2.6 DICOM Operator Input Trait Attributes .. 45

E.2.7 DICOM Operator Output Trait Schematic .. 45
Table E.2.7 DICOM Operator Output Attributes ... 46

E.2.8 DICOM REST API Provider Trait Schematic ... 46
Table E.2.8 DICOM REST API Provider Trait Attributes .. 47

E.2.9 DICOM REST API User Trait Schematic ... 48
Table E.2.9 DICOM REST API User Trait Attributes .. 48

E.3 Security Traits .. 49
E.3.1 DICOM User Identity Security Trait Schematic .. 49

Table E.3.1 DICOM User Identity Security Trait Attributes 49
E.3.2 DICOM License Trait Schematic .. 49

Table E.3.2 DICOM License Trait Attributes... 50
F. Application Configuration ... 50

F.1 Top-Level Attributes of an Application ... 50
Table F.1 Application Configuration Attributes .. 50

F.2 Application Specification .. 50
Table F.2 Application Configuration Specification Attributes .. 50
F.2.1 Component ... 51

Table F.2.1 Application Configuration Component Attributes 51
F.2.1.1 Parameter Settings ... 51

Table F.2.1.1 Component Parameter Setting Attributes .. 51
F.2.1.2 Trait Properties ... 51

Table F.2.1.2 Component Trait Properties Attributes .. 51
F.2.1.2.1 Properties 52

F.2.1.3 Scopes .. 52
Table F.2.1.3 Component Scope Attributes ... 52
F.2.1.3.1 Scope Reference .. 52

Table F.2.1.3.1 Component Scope Reference Attributes 52
F.2.2 Example Application Configuration.. 53

G. Manifests ... 54
G.1 Manifest Example .. 54

 Template for DICOM
 Page 6

H. Registration .. 57
H.1 Registration Resources ... 57

Table H.1 Web Service Resource Paths ... 57
H.2 Manifest Registration ... 58

H.2.1 Scaling Considerations .. 58
H.3 Registration Workflow .. 59

I. Discovery .. 59
I.1 Platform Discovery .. 59

I.1.1 Platform Discovery Workflow ... 60
I.2 Application Discovery .. 61

I.2.1 Application Discovery Workflow .. 62
J. Control ... 63

J.1 Scaling .. 63
Table J.1 Manual Scaler Trait Trait Attributes ... 63

J.2 Proxy .. 64
J.3 Application Manifest Driven Workflow .. 65

Annex A - DICOM Standardized Resource Definition Schemas .. 66
1. Scopes ... 66

1.1 DICOM Operation Scope ... 66
1.1.1 Reference .. 66
1.1.2 Definition .. 66

2. Workloads .. 67
2.1 DICOM Server Workload ... 67

2.1.1 Reference .. 67
2.1.2 Definition .. 67

2.2 DICOM Task Workload .. 70
2.2.1 Reference .. 70
2.2.2 Definition.. 71

3. Traits .. 71
3.1 DICOM Job Timeout Trait .. 71

3.1.1 Reference .. 71
3.1.2 Definition .. 71

3.2 DICOM Audit Trail Trait ... 72
3.2.1 Reference .. 72
3.2.2 Definition .. 72

3.3 DICOM Time Sync Trait .. 72
3.3.1 Reference .. 72
3.3.2 Definition .. 72

3.4 DICOM Application C-Store Provider Trait .. 73
3.4.1 Reference .. 73
3.4.2 Definition .. 73

3.5 DICOM Application C-Store User Trait .. 74
3.5.1 Reference .. 74
3.5.2 Definition .. 74

3.6 DICOM Application WADO User Trait ... 74
3.6.1 Reference .. 74
3.6.2 Definition .. 75

3.7 DICOM Application STOW Provider Trait ... 76
3.7.1 Reference .. 76
3.7.2 Definition .. 76

3.8 DICOM Application STOW User Trait ... 77

 Template for DICOM
 Page 7

3.8.1 Reference .. 77
3.8.2 Definition .. 77

3.9 DICOM Operator Input Trait .. 77
3.9.1 Reference .. 77
3.9.2 Definition .. 77

3.10 DICOM Operator Output Trait ... 78
3.10.1 Reference .. 78
3.10.2 Definition .. 79

3.11 DICOM REST API Provider Trait ... 80
3.11.1 Reference .. 80
3.11.2 Definition .. 80

3.12 DICOM REST API User Trait .. 81
3.12.1 Reference .. 81
3.12.4 Definition .. 81

3.13 DICOM User Identity Security Trait ... 82
3.13.1 Reference .. 82
3.13.2 Definition .. 82

3.14 DICOM License Trait ... 83
3.14.1 Reference .. 83
3.14.2 Definition .. 83

 Template for DICOM
 Page 8

Document History

2020/08/25 Version 1 BB New Document – Initial Working Draft

2021/03/25 Version 2 BB Moved Entrypoints to Traits to comply with new OAM spec

 Version 3 BB Content for WG 6 first read

Open Issues

1. WADO-WS was left out on purpose, should it be, are there any use cases for it?

2. What would be the minimum supported traits for DICOM compliance? These have been
proposed in the document, but are the sufficient?

3. How to handle expired or leaked secrets, is this in scope or handled by the platform on a
per inference request. When can a platform restart a container?

4. Fold content into Part 19. Part 19 becomes more generalized to be a collection of services
and interfaces, current DICOM API becomes a nested section 9.

5. For WADO should we just deal with data transfer only, and items such as iccprofile be
removed? What would be the minimum attributes required to be part of the supplement?

6. Are REST API Provider and User both needed, or can Provider be sufficient to cover all use
cases?

Closed Issues

1. FHIR Endpoint being used as an Entrypoint trait is outside the scope of this supplement, it
can be created, but should not be added to DICOM.

1. Scope and Field of Application

Supplement 224 adds mechanisms for discovering and managing processing services which will be
referred to throughout the supplement as “Applications”.

These Applications are comprised of one or more Components. Components each perform a single task
and must expose an Entrypoint to process data dispatched to it by the Platform in the form of jobs.
Entrypoints are applied to Components as traits. The implementation mechanism, replicability, lifetime
and Entrypoint of a given Component are defined by the Component's Workload type and characteristics.
Manifests are used to parameterize Components as well as describe an Application to a Platform.
Platforms are systems that register Applications using Manifests and dispatch work to an Application’s

 Template for DICOM
 Page 9

Entrypoint based on the Application Scope. In the context of this document, each of an Application's
Components carries out a specific action, such as detecting lesions or segmenting anatomical regions.

This supplement will also cover support mechanisms for data exchange with a focus on transaction
security.

2. Normative References

The following standards contain provisions that, through reference in this text, constitute provisions of this
Standard. At the time of publication, the editions indicated were valid. All standards are subject to
revision, and parties to agreements based on this Standard are encouraged to investigate the possibilities
of applying the most recent editions of the standards indicated below.

Open Application Model OAM v0.2.0 27 Mar 2020 https://github.com/oam-dev/spec

Kubernetes v1,19 28 Aug 2020 https://kubernetes.io/docs/home/

3. Definitions

OAM - Open Application Mode, defines a number of standard but extensible abstractions to model micro-
service applications by natural, with operation configurations as part of the application definition. OAM
resource types can be defined as core, standard or extended. Core resource definitions must exist on
every OAM platform.

Kubernetes - An open-source container orchestration engine for automating deployment, scaling, and
management of containerized applications

YAML - (a recursive acronym for "YAML Ain't Markup Language") is a human-readable data-serialization
language. It is commonly used for configuration files and in applications where data is being stored or
transmitted.

Application Programming Interface (API) - A set of interface methods that Applications and Platforms can
use to communicate with each other.

Component - An entity that maps characteristics to an implementation mechanism such as a container or
network service. Where the Component is a static network service or URI, scaling is the responsibility of
the Component. Where the Component is a container, virtual machine or other managed executable,
scaling is the responsibility of the Platform. The implementation mechanism of a Component is defined
the Component Workload type, while replicability, lifetime and some security aspects are defined by the
Component Traits.

Workload - The core definition of a component. These can be a ContainerizedWorkload, which requires
instantiation and scaling is the responsibility of the Platform, DicomServerWorkload, which provides
network services or request URIs, are not controlled by the Platform and scaling is the responsibility of
the Workload, and DicomTaskWorkload, which are parameterized executables where scaling is the
responsibility of the Platform.

Entrypoint - Entrypoints describe how data is accepted and results are emitted. These can be thought of
as SCU-SCP interface methods such as DIMSE storage services, web service APIs or mapped
input/output directories. Entrypoints and their security are defined by applying them as traits to a
Component in the Application Configuration.

https://github.com/oam-dev/spec
https://kubernetes.io/docs/home/

 Template for DICOM
 Page 10

Application – A combination of one or more Components described by a Manifest. These can be network
services, APIs, executables or containers. The Application additionally may be hosted thus, utilizing
services and resources offered by the Platform. The Application functions as the SCP to the Platform for
the work to be done.

Trait - A trait defines a piece of add-on functionality, characteristics, that pertains to the operation of a
Component and defined in the Application configuration. Traits may be limited to certain Workload types
based on their definition or a Component’s characteristic definition. Traits represent features of the
system that are operational concerns, not developer concerns.

Scope - Scopes provide different ways to group components into applications. Scopes are applied to an
Application Configuration. Each scope represents some associated behavior or functionality.

Parameter – A Parameter is an attribute in the specification that is made mutable, this can be required to
be defined in the Application Configuration or can have a default value which will be used if a value is not
specified.

Manifest – Used to describe an Application and its Components. It contains a description of the
underlying implementation mechanism (service, container, etc.) as well as the Application’s Scope and
Trait details. The Manifest is the authoritative description of an Application.

Platform – The system used to register, manage and interact with Applications. A Platform employs
Applications to perform work. Platforms register Applications using the Application’s Manifest, thereby
functioning as the SCU for each individual Application. A Platform can host, instantiate, parameterize
executables of or activate via API or use of network service, an Application. When the Platform acts as a
host, the Platform provides the infrastructure in which the Application runs and interacts with the external
environment. This includes network access, database and security.

Resources - Resources are the building blocks of an Application Configuration Manifest. Resources need
schemas defined for them before a unique resource instance can be defined.

A. Service Discovery and Control Overview

This supplement provides a mechanism for discovering and managing processing services. With the rise
of artificial intelligence, containerized processing, service-oriented architecture, and microservices, there
is a proliferation of processing services in the medical imaging space. Systems that use those services
need to discover what services are available and to launch and control those services, for example,
signaling a service to change its operational state (“start”, “stop”, “prepare for processing”, etc.).

This supplement introduces a Manifest that describes the Application to a Platform. The Manifest is a
unique object that describes what does the Application does, what is needed to run the Application and/or
where it is located as well as what the input and output Entrypoints are. A Manifest is used to describe
DICOM services or Applications in general, that is “I provide services X, Y, Z”, and the ability to apply
those services to specific instances, so that both discovery of what services are available can be found
and registry of what services can be provided can be made.

A.1 Manifest Structure Overview – YAML

Figure A.1 is a visual representation of the all the components of a DICOM Application Manifest and how
they are related to one another.

Figure A.1 Manifest Structure

 Template for DICOM
 Page 11

The structure of a complete DICOM Application Manifest YAML file is as follows:

Scope Definition(s)

Component Definition (1)
 Characteristics
 Workload
 Workload Specific Settings
 Parameter Declaration

Component Definition (2)
 Characteristics
 Workload
 Workload Specific Settings
 Parameter Declaration

Application Configuration
 Components
 Component 1
 Workload Settings
 Trait Properties
 Scope Reference
 Component 2
 Workload Settings
 Trait Properties
 Scope Reference

The Manifest leverages the Open Application Model (https://oam.dev/) for DICOM service discovery and
control, and specifically application manifests. Briefly, in OAM:

 Template for DICOM
 Page 12

• A developer creates an application or service. To deliver it to users, the developer defines how to
discover, instantiate and interact with it in a YAML manifest. This manifest encapsulates a
workload and the information needed to run it.

• An application operator deploys instances of an application and configures it with “operational
traits” (parameters that control things like instance replication).

• The application developer and application operator have so far described an application and its
operational characteristics in platform-neutral terms. The power of the Open Application Model
comes from the underlying platforms that implement the model.

The DICOM Application Manifest may contain only an Application Configuration if the Scope and
Component definitions it references have previously been registered with the Platform. Also, any Trait
schemas referenced need to be available on the Platform as well. See Table A.1

Table A.1 Manifest Sections

Manifest Section Optionality

Scope Definitions O

Component Definitions O

Application Configuration M

B. Resources

Resources are the building blocks of an Application Configuration Manifest. Resources need schemas
defined for them before a unique resource instance can be defined. The standardized schemas for
DICOM Scopes, Traits, and Component Workloads are defined as part of the DICOM Standard. Unique
instances of these resources are defined by application developers within their Application Configuration
Manifest. These can also be defined individually prior to posting an Application Configuration Manifest
whereas an Application Configuration would reference previously defined resources that are already
defined within the Platform.

When unique instances of a resource are created those values which the owner of the resource has
made mutable, or requires a value be entered by the consumer of the resource, will be specified as a
parameter in its definition. The actual values for each of these parameters are defined as part of the
Application Configuration in which the resource is used.

The Application Configuration schema used for DICOM is the same as defined for OAM. The schema
listed is valid for the version of OAM listed as a normative reference.

B.1 Resource Schemas

The resource definition schemas shall be specified as shown in Table B.1. All resources, Resource
Definitions, Scopes, Traits, Component Workloads and Application Configurations, will use this base
schema to define their contents.

Table B.1 Resource Schema Attributes

Attribute Type Description

apiVersion string A string that identifies the version of the schema the object should
have. For example, the standard types use
standard.oam.dev/v1alpha3

kind string A string defining the type of resource that is being defined. The
types of schemas defined within this specification are Resource
Definitions, Scopes, Traits, Components and Applications.

 Template for DICOM
 Page 13

metadata Metadata (see
B.1.1)

Information about the resource. The name value in the metadata
must be unique to a platform. This name is used as the kind when
defining a unique resource instance using its schema.

spec Spec (see the
referenced
resource
schema)

The settings to be used to define resource. These setting are the
standardized resource schema unless they are used in as a
resource definition whereas to define the schema itself.

When resources are defined with parameters, configuration settings that are either mutable or require
user values, the parameters attribute is added to the schema. Resources where parameters are valid are
noted as part of their specification properties in section B.3.

B.1.1 Resource Metadata

Metadata provides information about the contents of the component. The name attribute is used to
uniquely identify the resource. Table B.1.1 provides the schema for the metadata section of a resource.

Table B.1.1 Resource Metadata Schema Attributes

Attribute Type Required Default Value Description

name string Y A name for the component

labels Labels (see

B.1.1.1)

N Standard label requirements are
based on Workload Type.
Labels follow the Kubernetes
specification for labeling.

annotations Annotations (see

B.1.1.2)

N Annotations provide a
mechanism for attaching
arbitrary text within the metadata
of an object. The annotations
object follows the Kubernetes
specification

B.1.1.1 Labels

Labels are intended to be used to specify identifying attributes of objects that are meaningful and relevant
to users, but do not directly imply semantics to the core system. Table B.1.1.1 provides the schema for
the labels section of metadata.

Table B.1.1.1 Metadata Labels Schema Attributes

Attribute Type Required Default Value Description

app map[string]string N A name for the schematic

B.1.1.1.1 Example Labels

An example of a label is shown with multiple entries to provide vendor and support information. This is
how the labels section would appear in a resource.

 labels:
 vendorName: applicationVendor
 phone: 8005551212
 supportEmail: support@applicationVendor.com

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/#syntax-and-character-set
https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/#syntax-and-character-set

 Template for DICOM
 Page 14

B.1.1.2 Annotations

Annotations provide a mechanism for attaching arbitrary text within the metadata of an object. Table
B.1.1.2 provides the schema for the annotations section of metadata.

Table B.1.1.2 Metadata Annotations Schema Attributes

Attribute Type Required Default Value Description

app map[string]string N A name for the schematic

Table B.1.1.2.1 shows annotation labels that are predefined and recommended.

Table B.1.1.2.1 Recommended Metadata Annotations

Attribute Type Required Default Value Description

description string N A short description of the
component.

version string N A user provided string defining
the semantic version of the
component, e.g. the release
version of this software

B.1.1.2.1 Example Annotations

An example of an annotation is shown with the recommended entry to provide information. This is how
the annotation section would appear in a resource.

 annotations:
 description: sample api frontend
 version: “1.2.1”

B.1.2 Example Resource Instance

An example of a DICOM Operation Scope resource instance is shown with the recommended metadata
information provided. The spec section of the DICOM Operation Scope resource is defined in section
C.1.1. This is how a properly formatted resource would appear.

apiVersion: standard.oam.dev/v1alpha3
kind: DicomOperationScope
metadata:
 name: example-operation-scope
 labels:
 vendorName: applicationVendor
 phone: 8005551212
 supportEmail: support@applicationVendor.com
 annotations:
 description: aiAppScope
 version: “1.2.1”
spec:
 type: workitem
 vendor: MyAIApp
 version: 1.2.1
 code: RDES128
 codeSystem: https://radelement.org
 sopClasses:
 - 1.2.840.10008.5.1.4.1.1.2
 - 1.2.840.10008.5.1.4.1.1.2.1

 Template for DICOM
 Page 15

 - 1.2.840.10008.5.1.4.1.1.4
 - 1.2.840.10008.5.1.4.1.1.4.1
 friendlyName: SubduralHematomaDetection

B.2 Resource Schema Definitions

When creating a resource schema definition, the type of schema being defined is listed in the attribute
kind. The valid kinds for definitions are as follows:

• ScopeDefinition

• WorkloadDefinition

• TraitDefinition

Note the following DICOM resource schema definitions already exist as part of DICOM compliant OAM
platform and can be used to define unique instances. The schemas themselves are defined in Annex A
and the attributes defined as part of the DICOM standard for reference on defining the unique resource
instances.

• Scopes – Definitions of each resource type are included in section C.1.
o DicomOperationScope

• Component Workloads – Definitions of each resource type are included in section D.2.
o ContainerizedWorkload
o DicomServerWorload
o DicomTaskWorkload

• Traits – Definitions of each resource type are included in section E.1.
o JobTimeout
o AuditTrail
o TimeSync
o AppCStoreProvider
o AppCStoreUser
o AppWadoUser
o AppStowProvider
o AppStowUser
o OperatorInput
o OperatorOutput
o RestApiProvider
o RestApiUser
o UserIdentitySecurity
o License

B.2.1 Example Resource Schema Definition

These schemas define the spec section of the resource along with each attribute’s properties and
dependencies. DICOM resource schemas are defined in Annex A. To create additional resource
definitions, refer to the OAM specification and ensure the Platform implementation supports the schema.
For reference this is how a properly formatted resource definition would appear.

apiVersion: standard.oam.dev/v1alpha3

kind: TraitDefinition

metadata:

 name: AppCStoreProvider

spec:

 aet:

 description: This is the Called AET (Application Entity Title) of the

Entrypoint. It is the intended acceptor of the service request.

 type: string

 port:

 Template for DICOM
 Page 16

 description: This is the port which will be used to initiate the

DIMSE service request.

 type: integer

required:

- aet

- port

additionalProperties: false

B.3 Required Resources

Table B.3 lists the resource definition schemas of a DICOM Platform. To be minimally compliant a
Platform must support and host all the mandatory DICOM resource schemas. A DICOM Platform must
list all the resource schemas it supports in its conformance statement.

Table B.3 Required Resources

Resource Definition Optionality To be removed late, but rationale

DicomOperationScope Mandatory Needed to provide linkage to job requests

ContainerizedWorkload Mandatory Core OAM component

DicomServerWorkload Mandatory Core DICOM feature

DicomTaskWorkload Optional May be most basic function, yet difficult to
achieve. There can be countless environmental
combinations that would need to be supported.

JobTimeout Mandatory To allow control of resource utilization

AuditTrail Mandatory Basic requirement, system must be able to audit
PHI data interactions

TimeSync Mandatory To ensure audit messaging can be properly
traced

AppCStoreProvider Mandatory Core DICOM feature

AppCStoreUser Mandatory Core DICOM feature

AppWadoUser Optional Providing core DICOM functionality may be
enough. If a client has implemented DICOM Rest
Services, it would be a reasonable assumption
that they could implement or fall back to DIMSE.

AppStowProvider Optional Providing core DICOM functionality may be
enough. If a client has implemented DICOM Rest
Services, it would be a reasonable assumption
that they could implement or fall back to DIMSE.

AppStowUser Optional Providing core DICOM functionality may be
enough. If a client has implemented DICOM Rest
Services, it would be a reasonable assumption
that they could implement or fall back to DIMSE.

OperatorInput Mandatory Provides the lowest bar for entry, without the need
to create additional services. This allows a core
OAM function of mounts to be used in a way to
specify an entrypoint.

OperatorOutput Mandatory Provides the lowest bar for entry, without the need
to create additional services. This allows a core
OAM function of mounts to be used in a way to
specify an entrypoint.

RestApiProvider Optional Providing core DICOM functionality may be
enough, adding the ability to host APIs and the
proxy requirements can become complicated.
Having alternatives such as DIMSE and
Operators will allow for fallback options.

 Template for DICOM
 Page 17

RestApiUser Optional Providing core DICOM functionality may be
enough, adding the ability to host APIs and the
proxy requirements can become complicated.
Having alternatives such as DIMSE and
Operators will allow for fallback options.

UserIdentitySecurity Optional Applications may not need this functionality. If the
Platform does not provide this functionality, the
clients could make the request without it.

License Optional Applications may not need this functionality. If the
Platform does not support this requirement a
client could implement this another way.

B.4 Defining Unique Resources

When using a DICOM resource schema to define a unique resource instance, that is a resource whose
settings follow a previously defined standard schema, these unique resource instances use the same
basic schema template as shown in Table B.1.

B.4.1 Scope Specifications

Scope Definitions do not contain parameters. Unique definitions are applied at the Application
Configuration level of a Manifest using Definition References, see section B.5. The settings for these
resources are defined in their resource definition and all attribute values are provided. The specifically
defined settings for DICOM standard Scopes are listed in section C. The types of Scope resource
schemas defined within this specification are listed in section B.2.

B.4.2 Trait Specifications

Trait Definitions do not contain parameters as they are applied at the Application Configuration level of a
Manifest. The properties of these resources are defined in their definitions and all values are provided as
part of the manifest Application Configuration. Therefore, all settings are properties of the trait attributes.
The specifically defined settings for DICOM standard Traits in section F. The types of Trait resource
schemas defined within this specification are listed in section B.2.

B.4.3 Component Workload Specifications

The Workload Definitions may contain parameters, elements of the resource schema that are mutable or
require a user definition. Workload Definitions permit component owners to declare, in infrastructure-
neutral format, the runtime characteristics of a discrete unit of execution. The specifically defined settings
for DICOM standard Component Workloads are listed in section E.2. Components specify Workloads,
their characteristics, which Traits it can support, and attributes as well as declare parameters which can
or must have values provided as part of the Application Configurations in which they are used. The types
of Workload resource schemas defined within this specification are listed in section B.2.

B.5 Definition Reference

Once resources have been defined and loaded by a Platform, definition references are created which are
later used by the Platform to validate the unique resource definitions that use them. For a Platform to
claim it is DICOM complaint, all standard resource definitions in DICOM Part 19 Table B.3 defined as
Mandatory, must be present. Definition references can be used for DICOM Operation Scopes that are
predefined on a Platform in an Application’s Manifest.

Platforms will create references that can be used in defining resources as part of a manifest as well as
reading a Platform’s capabilities. The reference specification is the resource kind, appended with ‘Ref’.
For example, scopeRef. Table B.5 provides the schema for reference to a defined Platform resource.

 Template for DICOM
 Page 18

Table B.5 Definition Reference Attributes

Attribute Type Description

definitionRef ResourceRef
(see B.5.1)

The refence information to the resource definition.

B.5.1 Resource Reference

A resource reference indexes a reference by name. These names uniquely define a resource and must
be unique to a Platform. Table B.5.1 provides the schema for the Definition Reference section.

Table B.5.1 Resource Reference Attributes

Attribute Type Description

name sting The name used to uniquely identify the resource as well as the
group to which it belongs.

B.5.2 Example Definition Reference

An example of a Definition Reference instance is shown where Resource Definition is the resource kind.
This is how a properly formatted resource would appear.

apiVersion: standard.oam.dev/v1alpha3
kind: ScopeDefinition
metadata:
 name: DicomOperationScope
spec:
 definitionRef:
 name: schema.dicomoperationscope.oam.dev

C. Scopes

Scopes group components into applications. Scopes are applied to Components in the Application
Configuration. Each Scope represents some associated behavior or functionality. The DICOM Operation
Scope is used to associate jobs to Applications, for example procedure codes to capabilities. There are
no core Scopes defined by OAM, but OAM has Network and Health Scopes defined as standard Scopes.

C.1 DICOM Standardized Scope Definition Schemas

Application Scopes are used to group components together into logical applications by providing different
forms of application boundaries with common group behaviors. These schemas are used to define the
scope of a hosted application within DICOM. DicomOperationScope is a reserved name with a
standardized schema defined within this standard. This is defined as a Standard Scope definition of
OAM. Scopes do not contain the parameters. The settings for Scopes are defined in their resource
definitions and are referenced as part of the manifest Application Configuration using a scopeRef. See
Section B.5 for more information.

C.1.1 DICOM Operation Scope Schematic

The following is the definition reference for DICOM Operation Scope. The Resource Definition itself is
described in Table C.1.1 and the YAML file is listed in Annex A. The DICOM Operation Scope is used to
define an Application’s capabilities. These capabilities are defined by a code system which the Platform

 Template for DICOM
 Page 19

and Application use to process jobs. The DICOM standard definition reference for the DICOM Operation
Scope is listed below. The fully defined resource definition is located in Annex A Section 1.1.2.

apiVersion: standard.oam.dev/v1alpha3
kind: ScopeDefinition
metadata:
 name: DicomOperationScope
spec:
 definitionRef:
 name: schema.dicomoperationscope.oam.dev

Table C.1.1 DICOM Operation Scope Attributes

Attribute Type Required Default Value Description

type string Y Must be workitem, route, or
invoked. Details the expected
responsibility of the Platform as it
relates to the Application.

vendor string N The vendor of the Application

version string N The version of the Application

code string N A reference to a code defined by
a terminology system. Required
for workitem type.

codeSystem string N The identification of the code
system that defines the meaning
of the symbol in the code.
Required for workitem type.

sopClasses array N SOP Classes as defined by
DICOM Part 4. This is
represented as an array of SOP
Classes for which the Application
capabilities are valid. When an
SOP Class is not present the
platform may assign work to this
application scope at its discretion

friendlyName string N Name given to the Work Item to
understand its basic purpose.

C.1.1.1 DICOM Operation Types

Workitem – Operations defined by a shared code system between the Application and Platform. Work
items are managed by the Platform and are usually in response to job requests which may be in the form
of DICOM UPS messages.

Route – Data will be sent to the Application and once successfully transferred the platform can consider
the request complete.

Invoked – An Application that is invoked by some explicit user action.

C.1.1.2 Example DICOM Operation Scope Definition

An example of a DICOM Operation Scope instance is shown. This is how a properly formatted resource
would appear.

apiVersion: standard.oam.dev/v1alpha3

 Template for DICOM
 Page 20

kind: DicomOperationScope
metadata:
 name: example-operation-scope
spec:
 type: workitem
 vendor: MyAIApp
 version: 1.2.1
 code: RDES128
 codeSystem: https://radelement.org
 sopClasses:
 - 1.2.840.10008.5.1.4.1.1.2
 - 1.2.840.10008.5.1.4.1.1.2.1
 - 1.2.840.10008.5.1.4.1.1.4
 - 1.2.840.10008.5.1.4.1.1.4.1
 friendlyName: SubduralHematomaDetection

This resource would be referenced in an Application Configuration as seen in this example.

apiVersion: core.oam.dev/v1alpha3
kind: Application
metadata:
 name: my-example-dicom-application
spec:
 components:
 - name: example-containerized-dicom-server
 type: ContainerizedWorkload
 settings:
 hostname: myapp.myhospital.org
 ipaddress: 10.5.175.110
 traits:
 - type: auditTrail
 properties:
 syslogUri: https://arr.myhospital.org/applogs/myapp
 scopes:
 - scopeRef:
 apiVersion: standard.oam.dev/v1alpha3
 kind: DicomOperationScope
 name: example-operation-scope

D. Components

These attributes provide information about a component definition. They follow the Kubernetes API
convention. A component describes a set of container, service, or other executable entity that conforms
to the OAM Component Model and implements a distinct operation. Components enable application
developers to declare the characteristics of the code they deliver in infrastructure neutral terms. In
practice, a simple containerized workload, a Helm chart, or a cloud database may all be modeled as a
component.

D.1 Component Specification

Defines the workload that will be used for this Component. Each Component may only have one
workload associated with it. Table D.1 provides the schema attributes for a Component.

https://kubernetes.io/docs/concepts/overview/working-with-objects/kubernetes-objects/#required-fields
https://kubernetes.io/docs/concepts/overview/working-with-objects/kubernetes-objects/#required-fields

 Template for DICOM
 Page 21

Table D.1 Component Attributes

Attribute Type Required Default Value Description

workload Workload (see
Section D.1.1)

Y Refers to a workload definition
by name

schematic Template (see
Section 1.2)

Y Refers to the workloads
resource template

D.1.1 Workload

Defines the specific type of workload and which traits may or may not be applicable to the workload in this
Component’s implementation. Table D.1.1 provides the schema attributes for the Workload section of a
Component.

Table D.1.1 Component Workload Attributes

Attribute Type Required Default Value Description

definition Definition (see
Section D.1.1.1)

Y Refers to the type of workload
and the version of the schematic
for which it is defined

characteristics []ApplicableTraits
(see Section

D.1.1.2)

Y Refer to traits that can or cannot
be applied to the workload

D.1.1.1 Definition

Refers to the type of workload and the version of the schematic for which it is defined. Table D.1.1.1
provides the schema attributes for the Definition section of a Workload.

Table D.1.1.1 Workload Definition Attributes

Attribute Type Required Default Value Description

apiVersion string Y A string that identifies the
version of the schema the object
should have. For example, the
standard types use
standard.oam.dev/v1alpha3

kind string Y The type of workload,
ContainerizedWorkload,
DicomServerWorload or
DicomTaskWorkload
A declaration about what kind of
capability this component relies
upon.

D.1.1.2 Applicable Traits

Refer to traits that can or cannot be applied to the workload. For those traits not listed but may be part of
the Platform configuration, it is implied that these traits are false. The default value for a listed trait is true
if a value is not provided. Table D.1.1.2 provides the schema attributes for the Applicable Traits section
of a Workload.

Table D.1.1.2 Workload Applicable Traits Attributes

Attribute Type Required Default Value Description

 Template for DICOM
 Page 22

app map[string]boolean N true Defines whether a trait can be
applied to the component’s
workload

D.1.2 Template

This section declares the schematic of a component that could be instantiated as part of an application in
the later workflow.
The OAM specification has no opinion or enforcement on the schematic itself as long as a JSON schema
equivalent parameter list is defined. Though in order to make the OAM specification implementable,
several built-in approaches (cue, helm, kube) are defined as part of the specification itself. For the
DICOM standard, kube is used by default.
Table D.1.2 provides the attributes for the schematic section of a Component.

Table D.1 2 Component Schematic Attributes

Attribute Type Required Default Value Description

schematic string Y kube Defines which workload
definition template is being used.
Must be kube, cue or helm.

D.1.3 Example Component Specification

An example of a DICOM Component instance with a Containerized Workload is shown. This is how a
properly formatted resource would appear.

apiVersion: core.oam.dev/v1alpha3
kind: ComponentDefinition
metadata:
 name: example-containerized-dicom-server
 annotations:
 description: ExampleDicomServer
 version: 1.0.1
spec:
 workload:
 definition:
 apiVersion: core.oam.dev/v1alpha3
 kind: ContainerizedWorkload
 characteristics:
 auditTrail: true
 license: true
 operatorInput: true
 operatorOutput: true
 appCStoreProvider: true
 appCStoreUser: true
 schematic:
 kube:
 template:
 apiVersion: core.oam.dev/v1alpha3
 kind: ContainerizedWorkload
 metadata:
 name: example-containerized-dicom-server
 spec:
 osType: linux
 containers:
 - name: example-containerized-dicom-server
 image: example/exampledicomserver:1.0.1@sha256:verytrustworthyhash

 Template for DICOM
 Page 23

 resources:
 cpu:
 required: 1.0
 memory:
 required: 100MB
 ports:
 - name: liveness
 containerPort: 8080
 - name: readiness
 containerPort: 8088
 - name: https
 containerPort: 8443
 livenessProbe:
 httpGet:
 port: 8080
 path: /live
 readinessProbe:
 httpGet:
 port: 8088
 path: /ready
 env:
 - name: hostname
 value: my.server.com
 - name: ipaddress
 value: 192.168.1.2
 parameters:
 - name: image
 required: false
 fieldPaths:
 - "spec.containers[0].image"
 - name: livenessPort
 required: false
 fieldPaths:
 - "spec.containers[0].resources.port[0].containerPort"
 - "spec.containers[0].resources.livenessProbe.httpGet.port"
 - name: livenessPort
 required: false
 fieldPaths:
 - "spec.containers[0].resources.port[1].containerPort"
 - "spec.containers[0].resources.readinessProbe.httpGet.port"
 - name: httpsPort
 required: false
 fieldPaths:
 - "spec.containers[0].resources.port[2].containerPort"
 - name: hostname
 required: false
 fieldPaths:
 - "spec.containers[0].env.value[0]"
 - name: ipaddress
 required: false
 fieldPaths:
 - "spec.containers[0].env.value[1]"

 Template for DICOM
 Page 24

D.2 Component Workloads

Component workloads are defined in DICOM as Kubernetes objects. For container schematics these are
noted as kube. OAM supports containers defined as cue templates and parameters or as a helm chart as
well. The template used is noted in the schematics section of the component specification. (see D.1.2)

D.2.1 Containerized Workload Type Settings

Used to specify the settings of a container that needs instantiation by the Platform. This portion of the
specification is used directly from OAM in DICOM.

The ContainerizedWorkload is a Serverless Container style workload definition that could be referenced
as the schema for long-running containerized workload types for runtime platforms like Azure ACI, AWS
Fargate or simple stateless workload of Kubernetes.

Note: it's by design that ContainerizedWorkload schema is NOT equivalent to Kubernetes Pod
specification. As a schema for serverless style workload, ContainerizedWorkload intends to focus on
developer facing primitives only and be self-contained so developers don't need to define objects like
ConfigMap or Secret. Also, it exposes container ports by default.

Table D.2.1 provides the schematic specification for ContainerizedWorkload.

Table D.2.1 Containerized Workload Attributes

Attribute Type Required Default Value Description

osType string N The OS required to host (all of) the
component's containers (since
containers share a kernel with the
underlying host). Possible values
include:

• Linux

• Windows
Default can be none and let the
runtime decide where to place the
component.

arch string N The CPU architecture required to
host (all of) the component's
containers (since containers share
physical hardware with the
underlying host). Possible values
include:

• i386

• amd64

• arm

• arm64
Default can be none and let the
runtime chose architecture.

containers []Container
(see Section

D.2.1.1)

Y The OCI container(s) that implement
the component. Runtime instance of
an image.

parameters Parameter
(see Section

D.3)

N The component's configuration
options. The parameters that can be
adjusted during operation time.

 Template for DICOM
 Page 25

D.2.1.1 Container

This section describes the runtime configuration necessary to run a containerized workload for this
component. Table D.2.1.1 provides the attributes for the container section of a Containerized Workload.

Table D.2.1.1 Container Attributes

Attribute Type Required Default Value Description

name string Y The container's name. Must be
unique per component.

image string Y A path-like or URI-like representation
of the location of an OCI image.
Where applicable, this MAY be
prefixed with a registry address,
SHOULD be suffixed with a tag.

resources Resources
(see Section

D.2.1.1.1)

Y Resources required by the container.

cmd []string N Container run array

args []string N Used to pass arguments to the
container. The container image's
CMD is used if this is not provided.

env []Env (see
Section

D.2.1.1.2)

N Environment variables for the
container.

config []ConfigFile
(see Section

D.2.1.1.3)

N Locations to write configuration as
files accessible within the container

ports []Port (see
Section
2.1.1.4)

N Ports exposed by the container.

livenessProbe HealthProbe
(see Section

2.1.1.5)

N Instructions for assessing whether
the container is alive.

readinessProbe HealthProbe
(see Section

2.1.1.5)

N Instructions for assessing whether
the container is in a suitable state to
serve traffic.

imagePullSecret string N Key that can be used to retrieve the
credentials for pulling this secret.

The details of the way that a runtime takes imagePullSecret and loads credentials is left to the OAM
runtime implementation. For example, a Kubernetes implementation may treat this as a key that can be
loaded from a secret. While it is not required, it is RECOMMENDED that image names be suffixed with a
digest in OCI format. The digest may be used to compute the integrity of the image.
example/foobar@sha256:72e996751fe42b2a0c1e6355730dc2751ccda50564fec929f76804a6365ef5ef.

 Template for DICOM
 Page 26

The name field is required and must be 63 characters or less, beginning and ending with an alphanumeric
character ([a-z0-9A-Z]) with dashes (-), underscores (_), dots (.), and alphanumerics between.

D.2.1.1.1 Resources

Resources describe compute resources attached to a runtime. Table D.2.1.1.1 provides the attributes for
the resources section of a container.

Table D.2.1.1.1 Container Resources Attributes

Attribute Type Required Default Value Description

cpu CPU (see Section
D.2.1.1.1.1)

Y Specifies the attributes of the
cpu resource required for the
container.

memory Memory (see Section
D.2.1.1.1.2)

Y Specifies the attributes of the

memory resource required for

the container.

gpu GPU (see Section

D.2.1.1.1.3)

N Specifies the attributes of the
gpu resources required for the
container.

volumes []Volume (see

Section D.2.1.1.1.4)

N Specifies the attributes of the
volumes that the container
uses.

extended []ExtendedResource

(see Section

D.2.1.1.1.5)

N Implementation-specific
extended resource
requirements

For any resource that cannot be satisfied by the underlying platform, the platform MUST return an error
and cease deployment. A resource is considered a requirement, and failure to meet that requirement
means the runtime MUST NOT deploy the application. For example, if an application requests 1P of
memory, and that amount of memory is not available, the application deployment must fail. Likewise, if an
application requires 1 gpu, and the runtime does not provide gpus, the application deployment MUST fail.

D.2.1.1.1.1 CPU

Table D.2.1.1.1.1 provides the attributes for the CPU section of container resources.

Table 2.1.1.1.1 Container Resource CPU Attributes

Attribute Type Required Default Value Description

required double Y The minimum number of logical

cpus required for running this

container.

D.2.1.1.1.2 Memory

Table D.2.1.1.1.2 provides the attributes for the memory section of container resources.

Table 2.1.1.1.2 Container Resource Memory Attributes

Attribute Type Required Default Value Description

 Template for DICOM
 Page 27

required string Y The minimum amount of

memory required for running this

container. The value should be a

positive integer with/without unit

suffix: P, T, G, M, K. If no unit is

given, it defaults to 'bytes'.

D.2.1.1.1.3 GPU

Table D.2.1.1.1.3 provides the attributes for the GPU section of container resources.

Table 2.1.1.1.3 Container Resource GPU Attributes

Attribute Type Required Default Value Description

required double Y The minimum number of logical

gpus required for running this

container.

D.2.1.1.1.4 Volume

Volume describes name, a location to mount the volume, along with access mode (such as read/write or
read-only) and sharing policy for the mount. It also describes the underneath disk attributes needed by
the volume. The format of the path is specific to the operating system of the consuming component,
though implementations SHOULD provide support for UNIX-like path representations. Table D.2.1.1.1.4
provides the attributes for the volume section of container resources.

Table 2.1.1.1.4 Container Resource Volume Attributes

Attribute Type Required Default Value Description

name string Y Specifies the name used to
reference the path.

mountPath string Y Specifies the actual mount
path in the filesystem.

accessMode string N RW Specifies the access mode.
Allowed values are RW
(read/write) and RO (read-
only).

sharingPolicy string N Exclusive The sharing policy for the
mount, indicating if it is
expected to be shared or not.
Allowed values are Exclusive
and Shared.

disk Disk (see Section

D.2.1.1.1.4.1)

N Specifies the attributes of the
underneath disk resources
required by the volume.

Example:

name: "configuration"
mountPath: /etc/config
accessMode: RO
sharingPolicy: Shared
disk:
 required: "2G"

 Template for DICOM
 Page 28

 ephemeral: n

The above requires that a read-only volume be mounted at the path /etc/config, backed by a volume that
provides at least 2G of non-ephemeral storage.

D.2.1.1.1.4.1 Disk

The disk specifies the attributes of the disk used by the volume. It describes information such as minimum
disk size and the disk is ephemeral or not. Ephemeral disk indicates the component requires minimum
disk size on the node to run it. For example, image processing component may require a larger cache on
the node to run could use ephemeral disk. When ephemeral disk is set to false, it indicates external disk
will be used. Table D.2.1.1.1.4.1 provides the attributes for the disk section of a volume.

Table 2.1.1.1.4.1 Volume Disk Attributes

Attribute Type Required Default Value Description

required string Y The minimum disk size required

for running this container. The

value should be a positive value,

greater than zero.

ephemeral boolean N Specifies whether external disk

needs to be mounted or not.

D.2.1.1.1.5 ExtendedResource

An extended resource is a declaration of a resource requirement for an implementation-specific resource.
For example, OAM-compliant platforms may expose special hardware. This field allows containers to
indicate that such special offerings are required in order for the containers to operate. Table D.2.1.1.1.5
provides the attributes for the extended resource section of container resources.

Table 2.1.1.1.5 Container Resource Extended Resource Attributes

Attribute Type Required Default Value Description

name string Y The name of the resource, as a

Group/Version/Kind

required string Y The required condition.

The name field MUST be a group/version/kind identifying the specific resource.

Example:

extended:
- name: ext.example.com/v1.MotionSensor
 required: "1"
- name: ext.example.com/v2beta4.ServoModel
 required: z141155-t100

If the named extended resource is not available for any reason, implementations MUST return an error
when a component instance is created.

 Template for DICOM
 Page 29

D.2.1.1.2 Env

Env describes an environment variable as a name/value pair of strings. Table D.2.1.1.2 provides the
attributes for the environment variable.

Table D.2.1.1.2 Environmental Variable Attributes

Attribute Type Required Default Value Description

name string Y The environment variable name.

Must be unique per container.

value string N The environment variable value.

The name field must be composed of valid Unicode letter and number characters, as well as _ and -.

Example:

env:
 - name: "ADMIN_USER"
 value: "admin" # This is a literal value

D.2.1.1.3 ConfigFile

ConfigFile describes a path to a file available within the container, as well as the data that will be written
into that file. This provides a way to inject configuration files into a container. Table D.2.1.1.3 provides
the attributes for the configuration file.

Table D.2.1.1.3 Configuration File Attributes

Attribute Type Required Default Value Description

path string Y An absolute path within the
container.

value string N The data to be written into the
file at the specified path. If this is
not supplied, fromParam must
be supplied

fromParam string N The parameter whose value
should be written into this file as
a value

The path field must contain a path that abides by the pathing rules of the underlying operating system. If a
relative path is given, implementations MUST assume the path is relative to the root directory of the
container. Implementations MAY produce an error if using such a path would violate security measures or
path layout requirements. If both fromParam and value are specified, fromParam MUST take
precedence, even if the parameter value is an empty value. If neither is specified, the runtime MUST
produce an error.

Example:

config:
 - path: "/etc/access/default_user.txt"
 value: "admin" # This is a literal value
 - path: "/var/run/db-data"
 fromParam: "sourceData" # The value will be read from the parameter whose name is `sourceData`

D.2.1.1.4 Port

Table D.2.1.1.4 provides the attributes for the port section of a container.

 Template for DICOM
 Page 30

Table D.2.1.1.4 Container Port Attributes

Attribute Type Required Default Value Description

name string Y A descriptive name for the port.

Must be unique per container.

containerPort integer Y The port number. Must be

unique per container.

Protocol string N TCP Indicates the transport layer

protocol used by the server

listening on the port. Valid

values are TCP and UDP.

The name field must be lowercase alphabetical characters as present in the ASCII character set (0061-
007A).

D.2.1.1.5 HealthProbe

Health Probe describes how a probing operation is to be executed as a way of determining the health of a
component. Table D.2.1.1.5 provides the attributes for Health Probe.

Table D.2.1.1.5 Health Probe Attributes

Attribute Type Required Default Value Description

exec Exec (see
Section

D.2.1.1.5.1)

N Instructions for assessing
container health by executing a
command. Either this attribute or
the httpGet attribute or the
tcpSocket attribute MUST be
specified. This attribute is
mutually exclusive with both the
httpGet attribute and the
tcpSocket attribute.

httpGet HTTPGet
(see

Section
D.2.1.1.5.2)

N Instructions for assessing
container health by executing an
HTTP GET request. Either this
attribute or the exec attribute or
the tcpSocket attribute MUST be
specified. This attribute is
mutually exclusive with both the
exec attribute and the tcpSocket
attribute.

tcpSocket TCPSocket
(see

Section
D.2.1.1.5.3)

N Instructions for assessing
container health by probing a
TCP socket. Either this attribute
or the exec attribute or the
httpGet attribute MUST be
specified. This attribute is
mutually exclusive with both the
exec attribute and the httpGet
attribute.

 Template for DICOM
 Page 31

initialDelaySeconds integer N 0 Number of seconds after the
container is started before the
first probe is initiated.

periodSeconds integer N 10 How often, in seconds, to
execute the probe.

timeoutSeconds integer N 1 Number of seconds after which
the probe times out.

successThreshold integer N 1 Minimum consecutive successes
for the probe to be considered
successful after having failed.

failureThreshold integer N 3 Number of consecutive failures
required to determine the
container is not alive (liveness
probe) or not ready (readiness
probe).

D.2.1.1.5.1 Exec

Table D.2.1.1.5.1 provides the attributes for the command execution section of Health Probe.

Table D.2.1.1.5.1 Health Probe Command Execution Attributes

Attribute Type Required Default Value Description

command []string Y A command to be executed
inside the container to assess its
health. Each space delimited
token of the command is a
separate array element.
Commands exiting 0 are
considered to be successful
probes, whilst all other exit
codes are considered failures.

D.2.1.1.5.2 HTTPGet

Table D.2.1.1.5.2 provides the attributes for the HTTP Get section of Health Probe.

Table D.2.1.1.5.2 Health Probe HTTP Get Attributes

Attribute Type Required Default Value Description

path string Y The endpoint, relative to the
port, to which the HTTP GET
request should be directed.

port integer Y The TCP socket within the
container to which the HTTP
GET request should be directed.

httpHeaders []HTTPHeader
(see Section
D.2.1.1.5.2.1)

N Optional HTTP headers.

D.2.1.1.5.2.1 HTTPHeader

Table D.2.1.1.5.2.1 provides the attributes for the HTTP Header section of HTTP Get.

 Template for DICOM
 Page 32

Table D.2.1.1.5.2.1 HTTP Get HTTP Header Attributes

Attribute Type Required Default Value Description

name string Y An HTTP header name. This

must be unique per HTTP GET-

based probe.

value string Y An HTTP header value.

Both name and value must abide by the HTTP/1.1 specification for valid header values

D.2.1.1.5.3 TCPSocket

Table D.2.1.1.5.3 provides the attributes for the TCP Socket section of Health Probe.

Table D.2.1.1.5.3 Health Probe TCP Socket Attributes

Attribute Type Required Default Value Description

port integer Y The TCP socket within the

container that should be probed

to assess container health.

Port must be an integer value greater than 0

D.2.1.2 Containerized Workload Example

An example of a DICOM Component instance with a Containerized Workload is shown. This is how a
properly formatted resource would appear.

apiVersion: core.oam.dev/v3
kind: Component
metadata:
 name: example-containerized-dicomweb-server
 annotations:
 description: ExampleDicomWebServer
 version: 1.0.1
spec:
 workload:
 type: ContainerizedWorkload
 characteristics:
 auditTrail: true
 license: true
 timeSync: true
 appWadoUser: true
 appStowProvider: true
 appStowUser: true
 userIdentitySecurity: true
 schematic:
 kube:
 template:
 apiVersion: core.oam.dev/v1alpha3
 kind: ContainerizedWorkload
 metadata:
 name: example-containerized-dicomweb-server
 spec:
 osType: linux
 containers:

 Template for DICOM
 Page 33

 - name: example-containerized-dicomweb-server
 image: example/exampledicomwebserver:1.0.1@sha256:verytrustworthyhash
 resources:
 cpu:
 required: 1.0
 memory:
 required: 100MB
 ports:
 - name: http
 containerPort: 8080
 - name: https
 containerPort: 8443
 livenessProbe:
 httpGet:
 port: 8086
 path: /healthz
 readinessProbe:
 httpGet:
 port: 8088
 path: /healthz
 env:
 - name: hostname
 value: my.server.com
 - name: ipaddress
 value: 192.168.1.2
 parameters:
 - name: image
 required: false
 fieldPaths:
 - "spec.containers[0].image"
 - name: hostname
 required: false
 fieldPaths:
 - "spec.containers[0].env.value[0]"
 - name: ipaddress
 required: false
 fieldPaths:
 - "spec.containers[0].env.value[1]"

D.2.2 DICOM Server Workload Type Settings

Used to describe persistent network services or APIs that need not be instantiated by the Platform.

Table D.2.2 provides the schematic specification for DICOM Server Workload. The Definition Reference
for DICOM Server Workload is also provided as reference. The Definition itself can be found in Annex A.

apiVersion: standard.oam.dev/v1alpha3
kind: WorkloadDefintion
metadata:
 name: DicomServerWorkload
spec:
 definitionRef:
 name: schema.dicomserverworkload.oam.dev

 Template for DICOM
 Page 34

Table D.2.2 DICOM Server Workload Attributes

Attribute Type Required Default Value Description

host string Y Host name or ip of the server. Note
in workloads where the host name or
ip may also be specified elsewhere
in the settings and either is to be
made mutable the parameter
fieldPath for both locations needs to
be specified

livenessProbe HealthProbe
(see Section

2.1.1.5)

N Instructions for assessing whether
the server is alive.

readinessProbe HealthProbe
(see Section

2.1.1.5)

N Instructions for assessing whether
the server is in a suitable state to
serve traffic.

D.2.2.1 DICOM Server Workload Example

An example of a DICOM Component instance with a DICOM Server Workload is shown. This is how a
properly formatted resource would appear.

apiVersion: standard.oam.dev/v3
kind: Component
metadata:
 name: example-dicom-server
 annotations:
 description: ExampleDicomServer
 version: 1.2.1
spec:
 workload:
 type: DicomServerWorkload
 characteristics:
 auditTrail: true
 timeSync: true
 jobTimeout: true
 appCStoreUser: true
 appCStoreProvider: true
 userIdentitySecurity: true
 schematic:
 kube:
 template:
 apiVersion: standard.oam.dev/v1alpha3
 kind: DicomServerWorkload
 metadata:
 name: example-dicom-server
 spec:
 host: mydicomserver.myhospital.org
 livenessProbe:
 httpGet:
 port: 8086
 path: /healthz
 readinessProbe:
 httpGet:
 port: 8088
 path: /healthz

 Template for DICOM
 Page 35

D.2.3 DICOM Task Workload Type Settings

Used to describe parameterized executables which can be local or remote, if environment is hard to
reproduce, it can be created on a remote server and called from there.

Table D.2.3 provides the schematic specification for DICOM Task Workload. The Definition Reference for
DICOM Task Workload is also provided as reference. The Definition itself can be found in Annex A.

apiVersion: standard.oam.dev/v1alpha3
kind: WorkloadDefintion
metadata:
 name: DicomTaskWorkload
spec:
 definitionRef:
 name: schema.dicomtask workload.oam.dev

Table D.2.3 DICOM Task Workload Attributes

Attribute Type Required Default Value Description

exec Command
(see Section

D.2.3.1)

Y The path or uri to the executable.

env []Env (see
Section

D.2.1.1.2)

N Environment variables. For Task
Workload types environmental
variables such as operating system
or runtime component requirements
should be specified here.

D.2.3.1 Command

Table D.2.3.1 provides the attributes for the command section of Task Workload.

Table D.2.3.1 Task Workload Command Attributes

Attribute Type Required Default Value Description

command []string Y A command to be executed.

Each command will be executed

sequentially. Commands exiting

0 are considered successful

D.2.3.2 Example DICOM Task Workload

An example of a DICOM Component instance with a DICOM Task Workload is shown. This is how a
properly formatted resource would appear.

apiVersion: standard.oam.dev/v3
kind: Component
metadata:
 name: example-dicom-task
 annotations:
 description: ExampleDicomTask
 version: 2.2.1
spec:

 Template for DICOM
 Page 36

 workload:
 type: DicomTaskWorkload
 characteristics:
 jobTimeout: true
 operatorInput: true
 operatorOutput: true
 schematic:
 kube:
 template:
 apiVersion: standard.oam.dev/v1alpha3
 kind: DicomTaskWorkload
 metadata:
 name: example-dicom-task
 spec:
 exec:
 command:
 - \\myshare.mynetwork.org\programs\exampletask\task.jar
 env:
 - name: jreVersion
 value: 1.8

D.3 Parameter

A Parameter is an attribute in the specification that is made mutable, this can be required to be defined in
the Application Configuration or can have a default value which will be used if a value is not specified.
Default values are placed in the field path value when the resource is defined. The use of fromParam as
a value specifies the parameter whose value should be written into the resource fieldPath as a value.
The parameter name is used in the Application Configuration to specify the settings of the parameter
value. Table D.3 provides the schematic specification for Parameter.

Table D.3 Parameter Attributes

Attribute Type Required Default Value Description

name string Y The parameter's name. Must be
unique per component.

description string N A description of the parameter.

fieldPaths string Y JSON field paths.

required boolean N false Whether a value must be provided
when authoring an
applicationConfiguration including
this component.

Example:

parameters:
- name: image
 description: the uri of the image file
 fieldPaths:
 - "spec.containers[0].image"
 required: true

 Template for DICOM
 Page 37

E. Traits

DICOM Trait definitions are broken down into 3 sections. These traits are for Control, Entrypoints and
Security. These traits definition are Standard definitions of OAM for a DICOM compliant Platform.

E.1 Control Traits

The Control traits JobTimeout, AuditTrail, and TimeSync are reserved names with standardized schemas
defined within this standard. This group of traits include those that control the overall actions of a
component.

E.1.1 DICOM Job Timeout Trait Schematic

Used to set a timeout for a job. Once the timeout is exceeded the status will become failed with reason
timeout exceeded. If the Platform is controlling the container or task the Platform may terminate the
instance. Table E.1.1 provides the attributes for the DICOM Job Timeout Trait. The Definition Reference
for Job Timeout is also provided as reference. The Definition itself can be found in Annex A.

apiVersion: standard.oam.dev/v1alpha3
kind: TraitDefintion
metadata:
 name: JobTimeout
spec:
 definitionRef:
 name: schema.jobtimeout.oam.dev

Table E.1.1 DICOM Job Timeout Trait Attributes

Attribute Type Required Default Value Description

seconds integer Y 30 Used to set a timeout for a job.

Example Job Timeout Trait Usage

traits:
 - name: jobTimeout
 properties:
 seconds: 30

E.1.2 DICOM Audit Trail Trait Schematic

For information on Audit Trial Message formats, schemas and coding refer to PS3.15 Annex A. The Trait
specified in this section provides information on audit trail endpoints for connectivity only, not for content.
Table E.1.2 provides the attributes for the DICOM Audit Trail Trait. The Definition Reference for Audit
Trail is also provided as reference. The Definition itself can be found in Annex A.

apiVersion: standard.oam.dev/v1alpha3
kind: TraitDefintion
metadata:
 name: AuditTrail
spec:
 definitionRef:
 name: schema.audittrail.oam.dev

 Template for DICOM
 Page 38

Table E.1.2 DICOM Audit Trail Trait Attributes

Attribute Type Required Default Value Description

tlsVersion string N Only versions supported in Part
15 are acceptable

tlsCertificate string N Trusted certificate for this
communication

tlsPassword string N Password for keystore to access
certificate if required

tlsCipherSuite string N Represented as documented in
Part 15 Sections B.9 and B.10, for
example
TLS_ECDHE_RSA_WITH_AES_
256_GCM_SHA384

syslogUri string Y Identifies the resource by name at
the specified location or URL

Example Audit Trail Trait Usage

traits:
 - name: auditTrail
 properties:
 tlsVersion: 1.2
 tlsCertificate: server.app.com
 tlsPassword: myAppSecretPa$$w0rd
 tlsCipherSuite: TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
 syslogUri: \\server.mysite.org\auditlog\myapp

E.1.3 DICOM Time Sync Trait Schematic

To ensure events are in synchronization, the use of a common time synchronization server is commonly
used. Table E.1.3 provides the attributes for the DICOM Time Sync Trait. The Definition Reference for
Time Sync is also provided as reference. The Definition itself can be found in Annex A.

apiVersion: standard.oam.dev/v1alpha3
kind: TraitDefintion
metadata:
 name: TimeSync
spec:
 definitionRef:
 name: schema.timesync.oam.dev

Table E.1.3 DICOM Time Sync Trait Attributes

Attribute Type Required Default Value Description

ntpTimeServer string Y Server address used for time
synchronization.

Example Time Sync Trait Usage

traits:
 - name: TimeSync
 properties:
 ntpTimeServer: time.nist.gov

 Template for DICOM
 Page 39

E.2 Entrypoint Traits

The Entrypoint traits AppCStoreProvider, AppCStoreUser, AppWadoUser, AppStowProvider,
AppStowUser, OperatorInput, OperatorOutput, RestApiProvider and RestApiProvider TimeSync are
reserved names with standardized schemas defined within this standard and include optional security
attributes. Entrypoint traits describe how data is accepted and results are emitted for a Component.
These can be thought of as SCU-SCP interface methods such as DIMSE storage services, web service
APIs or mapped input/output directories.

E.2.1 DICOM Application C-Store Provider Trait Schematic

This Entrypoint Trait is used to specify DICOM DIMSE endpoint information for an application acting as a
C-Store SCP. Note the hostname will be provided as part of the Workload definition. Table E.2.1
provides the attributes for the DICOM Application C-Store Provider Trait. The Definition Reference for
Application C-Store Provider is also provided as reference. The Definition itself can be found in Annex A.

apiVersion: standard.oam.dev/v1alpha3
kind: TraitDefintion
metadata:
 name: AppCStoreProvider
spec:
 definitionRef:
 name: schema.appcstoreprovider.oam.dev

Table E.2.1 DICOM Application C-Store Provider Trait Attributes

Attribute Type Required Default Value Description

aet string Y AET the entrypoint uses for inbound data
transfers, the entrypoint’s storage SCP AET

port integer Y Port the entrypoint uses for inbound data
transfers. Note in workloads where the port
may also be specified elsewhere in the
settings and is to be made mutable the
parameter fieldPath for both locations needs
to be specified

tlsVersion string N Only versions supported in Part 15 are
acceptable

tlsCertificate string N Trusted certificate for this communication

tlsPassword string N Password for keystore to access certificate if
required

tlsCipherSuite string N Represented as documented in Part 15
Sections B.9 and B.10, for example
TLS_ECDHE_RSA_WITH_AES_256_GCM_
SHA384

scuAet string N AET of SCU if required by SCP

scuHost string N Host name or ip of SCU if required by SCP

Example Application C-Store Provider Trait Usage

traits:
 - name: AppCStoreProvider
 properties:
 aet: MYAPPAET
 port: 104

 Template for DICOM
 Page 40

 tlsVersion: 1.2
 tlsCertificate: server.app.com
 tlsPassword: myAppSecretPa$$w0rd
 tlsCipherSuite: TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
 scuAet: YOURAPPAET
 scuHost: yourapp.yourdomain.org

E.2.2 DICOM Application C-Store User Trait Schematic

This Entrypoint Trait is used to specify DICOM DIMSE endpoint information for an application acting as a
C-Store SCU. Table E.2.2 provides the attributes for the DICOM Application C-Store User Trait. The
Definition Reference for Application C-Store User is also provided as reference. The Definition itself can
be found in Annex A.

apiVersion: standard.oam.dev/v1alpha3
kind: TraitDefintion
metadata:
 name: AppCStoreUser
spec:
 definitionRef:
 name: schema.appcstoreuser.oam.dev

Table E.2.2 DICOM Application C-Store User Trait Attributes

Attribute Type Required Default Value Description

destAet string Y AET the entrypoint uses for inbound data
transfers, the entrypoint’s storage SCP AET

destPort integer Y Port the entrypoint uses for inbound data
transfers. Note in workloads where the port
may also be specified elsewhere in the
settings and is to be made mutable the
parameter fieldPath for both locations needs
to be specified

destHost string Y Host name or ip the entrypoint uses for
inbound data transfers. Note in workloads
where the host name or ip may also be
specified elsewhere in the settings and either
is to be made mutable the parameter
fieldPath for both locations needs to be
specified

tlsVersion string N Only versions supported in Part 15 are
acceptable

tlsCertificate string N Trusted certificate for this communication

tlsPassword string N Password for keystore to access certificate if
required

tlsCipherSuite string N Represented as documented in Part 15
Sections B.9 and B.10, for example
TLS_ECDHE_RSA_WITH_AES_256_GCM_
SHA384

Example Application C-Store User Trait Usage

traits:
 - name: AppCStoreUser
 properties:

 Template for DICOM
 Page 41

 destAet: YOURAET
 destPort: 104
 destHost: yourapp.yourdomain.org
 tlsVersion: 1.2
 tlsCertificate: server.app.com
 tlsPassword: myAppSecretPa$$w0rd
 tlsCipherSuite: TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384

E.2.3 DICOM Application WADO User Trait Schematic

This Entrypoint Trait is used to specify DICOM WADO endpoint information for an application acting as a
user. Table E.2.3 provides the attributes for the DICOM Application WADO User Trait. The Definition
Reference for Application WADO User is also provided as reference. The Definition itself can be found in
Annex A.

apiVersion: standard.oam.dev/v1alpha3
kind: TraitDefintion
metadata:
 name: AppWadoUser
spec:
 definitionRef:
 name: schema.appwadouser.oam.dev

Table E.2.3 DICOM Application WADO User Trait Attributes

Attribute Type Required Default Value Description

resourceUri string Y Identifies a resource via a
representation of its primary
access mechanism.

acceptHeaders string Y Section 9.1.2.2.1. The value of
this parameter, if present, shall
be either application/dicom, or
one or more of the Rendered
Media Types.

annotation array N Section 8.3.5.1.2 May be patient
and/or technique. Patient
indicates that the rendered
images shall be annotated with
patient information. Technique
indicates that the rendered
images shall be annotated with
information about the procedure
that was performed.

quality integer N Section 8.3.5.1.3. Is an
unsigned integer between 1 and
100 inclusive, with 100 being the
best quality.

viewport string N Section 8.3.5.1.3 vw and vh are
positive integers specifying the
width and height, in pixels, of the
rendered image or video. Both
values are required. sx and sy
are decimal numbers whose
absolute values specify, in
pixels, the top-left corner of the
region of the source image(s) to

 Template for DICOM
 Page 42

be rendered. If either sx or sy is
not specified, it defaults to 0. A
value of 0,0 specifies the top-left
corner of the source image(s).
sw and sh are decimal numbers
whose absolute values specify,
in pixels, the width and height of
the region of the source image(s)
to be rendered. If sw is not
specified, it defaults to the right
edge of the source image. If sh
is not specified, it defaults to the
bottom edge of the source
image. If sw is a negative value,
the image is flipped horizontally.
If sh is a negative value, the
image is flipped vertically.

window string N Section 8.3.5.1.4 Center, width,
function – center is a decimal
number containing the window-
center value. Width is a decimal
number containing the window-
width value and function is one
of the following ‘linear’, ‘linear-
exact’ or ‘sigmoid’

iccProfile string N Section 8.3.5.1.5 Must be ‘no’,
‘yes’, ‘srgb’, ‘adobergb’, or
‘rommrgb’.

tlsVersion string N Only versions supported in Part
15 are acceptable

tlsCertificate string N Trusted certificate for this
communication

tlsPassword string N Password for keystore to access
certificate if required

tlsCipherSuite string N Represented as documented in
Part 15 Sections B.9 and B.10,
for example
TLS_ECDHE_RSA_WITH_AES
_256_GCM_SHA384

Example Application WADO User Trait Usage

traits:
 - name: AppWadoUser
 properties:
 resourceUri: https://mydicomserver.mysite.org/wado
 acceptHeaders: application/dicom
 tlsVersion: 1.2
 tlsCertificate: server.app.com
 tlsPassword: myAppSecretPa$$w0rd
 tlsCipherSuite: TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384

E.2.4 DICOM Application STOW Provider Trait Schematic

This Entrypoint Trait is used to specify DICOM STOW endpoint information for an application acting as a
provider. Note the hostname will be provided as part of the Workload definition which should correlate

 Template for DICOM
 Page 43

with the resource URI. Table E.2.4 provides the attributes for the DICOM Application STOW Provider
Trait. The Definition Reference for Application STOW Provider is also provided as reference. The
Definition itself can be found in Annex A.

apiVersion: standard.oam.dev/v1alpha3
kind: TraitDefintion
metadata:
 name: AppStowProvider
spec:
 definitionRef:
 name: schema.appstowprovider.oam.dev

Table E.2.4 DICOM Application STOW Provider Trait Attributes

Attribute Type Required Default Value Description

resourceUri string Y Identifies a resource via a
representation of its
primary access
mechanism.

contentTypeHeaders

string Y Section 8.7.3.5 DICOM
Media Type Syntax

tlsVersion string N Only versions supported
in Part 15 are acceptable

tlsCertificate string N Trusted certificate for this
communication

tlsPassword string N Password for keystore to
access certificate if
required

tlsCipherSuite string N Represented as
documented in Part 15
Sections B.9 and B.10,
for example
TLS_ECDHE_RSA_WIT
H_AES_256_GCM_SHA
384

Example Application STOW Provider Trait Usage

traits:
 - name: AppStowProvider
 properties:
 resourceUri: https://mydicomserver.mysite.org/stow
 contentTypeHeaders: application/dicom
 tlsVersion: 1.2
 tlsCertificate: server.app.com
 tlsPassword: myAppSecretPa$$w0rd
 tlsCipherSuite: TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384

E.2.5 DICOM Application STOW User Trait Schematic

This Entrypoint Trait is used to specify DICOM STOW endpoint information for an application acting as a
user. Table E.2.5 provides the attributes for the DICOM Application STOW User Trait. The Definition
Reference for Application STOW User is also provided as reference. The Definition itself can be found in
Annex A.

 Template for DICOM
 Page 44

apiVersion: standard.oam.dev/v1alpha3
kind: TraitDefintion
metadata:
 name: AppStowUser
spec:
 definitionRef:
 name: schema.appstowuser.oam.dev

Table E.2.5 DICOM Application STOW User Trait Attributes

Attribute Type Required Default Value Description

destResourceUri string Y Identifies a resource via a
representation of its
primary access
mechanism.

destContentTypeHeaders

string Y Section 8.7.3.5 DICOM
Media Type Syntax

tlsVersion string N Only versions supported
in Part 15 are acceptable

tlsCertificate string N Trusted certificate for this
communication

tlsPassword string N Password for keystore to
access certificate if
required

tlsCipherSuite string N Represented as
documented in Part 15
Sections B.9 and B.10,
for example
TLS_ECDHE_RSA_WIT
H_AES_256_GCM_SHA
384

Example Application STOW User Trait Usage

traits:
 - name: AppStowUser
 properties:
 destResourceUri: https://yourdicomserver.yoursite.org/stow
 destContentTypeHeaders: application/dicom
 tlsVersion: 1.2
 tlsCertificate: server.app.com
 tlsPassword: yourAppSecretPa$$w0rd
 tlsCipherSuite: TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384

E.2.6 DICOM Operator Input Trait Schematic

When using the DICOM Operator Input Trait, data must be populated at the time of job start for task as
opposed to a monitored folder. Data Types (SOP classes) are defined as part of the Application’s Scope
when DICOM files are used as the input type. When used for data types other than DICOM, data types
can be listed here, although the content and coordination of formats are outside the scope of this
specification and need to be coordinated between the Platform and Application. Applications and their
components will have a minimum of read permission granted to an Operator Input. The Operator Input is
the path to the data which is to be used to perform the requestion action. This differs from paths specified
in a Container Workload as these as specifically used to pass data for job execution.

 Template for DICOM
 Page 45

This Entrypoint Trait is used to specify DICOM Operator Input endpoint information to an application
acting as a user. Table E.2.6 provides the attributes for the DICOM Operator Input Trait. The Definition
Reference for Operator Input is also provided as reference. The Definition itself can be found in Annex A.

apiVersion: standard.oam.dev/v1alpha3
kind: TraitDefintion
metadata:
 name: OperatorInput
spec:
 definitionRef:
 name: schema.operatorinput.oam.dev

Table E.2.6 DICOM Operator Input Trait Attributes

Attribute Type Required Default Value Description

path string Y To the folder level, everything in
the folder will be ingested

userType string N Must be basic, userIdPasscode,
kerberos, or saml

username string N Identification used to access
resource if required

passcode string N Passcode used to access
resources if required

dataTypes array N When not present MIME types
are considered to be DICOM
and are configured as part of
the scope via SOP classes.

signatureType string N Must be baseRsa, creatorRsa,
authorizationRsa, or
structuredReportRsa

macAlgorithm string N Used for key-confirmation if
required

publicKey string N Used to decrypt data if required

efsAlgorithm string N The symmetric encryption
algorithm used

efsKey string N Used to decrypt data if required

Example Operator Input Trait Usage

traits:
 - name: OperatorInput
 properties:
 path: \\mynetwork.org\appshare\data\in

E.2.7 DICOM Operator Output Trait Schematic

Applications and their components must have a minimum of read/write permission granted to an Operator
Output. This allows for writing artifacts as well as verifying their existence and that they are not corrupt.
The Operator Output is the path to where the data artifacts are to be placed after the Application performs
the requestion action. This differs from paths specified in a Container Workload as these as specifically
used to pass data artifacts resulting from job execution.

 Template for DICOM
 Page 46

This Entrypoint Trait is used to specify DICOM Operator Output endpoint information to an application
acting as a user. Table E.2.7 provides the attributes for the DICOM Operator Output Trait. The Definition
Reference for Operator Output is also provided as reference. The Definition itself can be found in Annex
A.

apiVersion: standard.oam.dev/v1alpha3
kind: TraitDefintion
metadata:
 name: OperatorOutput
spec:
 definitionRef:
 name: schema.operatoroutput.oam.dev

Table E.2.7 DICOM Operator Output Attributes

Attribute Type Required Default Value Description

destPath string Y This is to the folder level

dataTypes array Y This is to ensure output is
consistent, what the
application must output.
DICOM objects to be specified
as dicom.

userType string N Must be basic,
userIdPasscode, kerberos, or
saml

username string N Identification used to access
resource if required

passcode string N Passcode used to access
resources if required

signatureType string N Must be baseRsa, creatorRsa,
authorizationRsa, or
structuredReportRsa

macAlgorithm string N Used for key-confirmation if
required

publicKey string N Used to decrypt data if
required

efsAlgorithm string N The symmetric encryption
algorithm used

efsKey string N Used to decrypt data if
required

Example Operator Output Trait Usage

traits:
 - name: OperatorOutput
 properties:
 destPath: \\mynetwork.org\appshare\data\out
 destTypes: dicom

E.2.8 DICOM REST API Provider Trait Schematic

This Entrypoint Trait is used to specify DICOM REST API endpoint information for an application acting
as an API Provider. Note the specific API specification is not configured here, as this is just a reference
to the API itself. The API may then expose additional entrypoints or services beyond the scope of this
specification as part of its own specification. Table E.2.8 provides the attributes for the DICOM REST API

 Template for DICOM
 Page 47

Provider Trait. The Definition Reference for REST API Provider is also provided as reference. The
Definition itself can be found in Annex A.

apiVersion: standard.oam.dev/v1alpha3
kind: TraitDefintion
metadata:
 name: RestApiProvider
spec:
 definitionRef:
 name: schema.restapiprovider.oam.dev

Table E.2.8 DICOM REST API Provider Trait Attributes

Attribute Type Required Default Value Description

restApiName string Y Examples are AcrModelApi,
DicomWSDL

restApiVersion

string Y A string that identifies the
version of the API

resourceUri string Y Identifies a resource via a
representation of its primary
access mechanism.

uriType string Y Examples are request, liveliness,
readiness, log

tlsVersion string N Only versions supported in Part
15 are acceptable

tlsCertificate string N Trusted certificate for this
communication

tlsPassword string N Password for keystore to access
certificate if required

tlsCipherSuite string N Represented as documented in
Part 15 Sections B.9 and B.10,
for example
TLS_ECDHE_RSA_WITH_AES
_256_GCM_SHA384

authMethod string N basicAuth, formAuth,
clientCertAuth, oAuth,
bearerAuth

apiKey string N Key used to connect to the API

accessToken string N The authorization of a specific
application

refreshToken string N Used to acquire new access
token

Example REST API Provider Trait Usage

traits:
 - name: RestApiProvider
 properties:
 restApiName: DicomWSDL
 restApiVersion: 2021b
 resourceUri: https://mydicomserver.mysite.org/wsdlapi
 uriType: request

 Template for DICOM
 Page 48

E.2.9 DICOM REST API User Trait Schematic

This Entrypoint Trait is used to specify DICOM REST API endpoint information for an application acting
as an API User. Note the specific API specification is not configured here, as this is just a reference to
the API itself. The API may then expose additional entrypoints or services beyond the scope of this
specification as part of its own specification. Table E.2.9 provides the attributes for the DICOM REST API
User Trait. The Definition Reference for REST API User is also provided as reference. The Definition
itself can be found in Annex A.

apiVersion: standard.oam.dev/v1alpha3
kind: TraitDefintion
metadata:
 name: RestApiUser
spec:
 definitionRef:
 name: schema.restapiuser.oam.dev

Table E.2.9 DICOM REST API User Trait Attributes

Attribute Type Required Default Value Description

restApiName string Y Examples are AcrModelApi,
DicomWSDL

restApiVersion

string Y A string that identifies the
version of the API

resourceUri string Y Identifies a resource via a
representation of its primary
access mechanism.

uriType string Y Examples are request, liveliness,
readiness, log

tlsVersion string N Only versions supported in Part
15 are acceptable

tlsCertificate string N Trusted certificate for this
communication

tlsPassword string N Password for keystore to access
certificate if required

tlsCipherSuite string N Represented as documented in
Part 15 Sections B.9 and B.10,
for example
TLS_ECDHE_RSA_WITH_AES
_256_GCM_SHA384

authMethod string N basicAuth, formAuth,
clientCertAuth, oAuth,
bearerAuth

apiKey string N Key used to connect to the API

accessToken string N The authorization of a specific
application

refreshToken string N Used to acquire new access
token

Example REST API User Trait Usage

traits:
 - name: RestApiUser
 properties:
 restApiName: DicomWSDL

 Template for DICOM
 Page 49

 restApiVersion: 2021b
 resourceUri: https://yourdicomserver.yoursite.org/wsdlapi
 uriType: request

E.3 Security Traits

The Security traits UserIdentitySecurity and License are reserved names with standardized schemas
defined within this standard. These traits are used to provide security of the components and applications
themselves.

E.3.1 DICOM User Identity Security Trait Schematic

This Security Trait is used to specify DICOM User Identity Security information for an application when
not tied to an Application’s Entrypoint. Table E.3.1 provides the attributes for the DICOM User Identity
Security Trait. The Definition Reference for User Identity Security is also provided as reference. The
Definition itself can be found in Annex A.

apiVersion: standard.oam.dev/v1alpha3
kind: TraitDefintion
metadata:
 name: UserIdentitySecurity
spec:
 definitionRef:
 name: schema.useridentitysecurity.oam.dev

Table E.3.1 DICOM User Identity Security Trait Attributes

Attribute Type Required Default Value Description

userType string Y Must be basic, userIdPasscode,
kerberos, or saml

username string N Identification used to access
resource if required

passcode string N Passcode used to access
resources if required

Example User Identity Security Definition

traits:
 - name: UserIdentitySecurity
 properties:
 userType: basic
 username: mydicomuser

E.3.2 DICOM License Trait Schematic

This Security Trait is used to specify DICOM License information for an application. Table E.3.2 provides
the attributes for the DICOM License Trait. The Definition Reference for License is also provided as
reference. The Definition itself can be found in Annex A.

apiVersion: standard.oam.dev/v1alpha3
kind: TraitDefintion
metadata:
 name: License
spec:
 definitionRef:
 name: schema.license.oam.dev

 Template for DICOM
 Page 50

Table E.3.2 DICOM License Trait Attributes

Attribute Type Required Default Value Description

licenseKey string Y Application defined license key
string

machineKey string N Machine specific code generated,
example MAC or some other
machine code

Example Time Sync Trait Usage

traits:
 - name: License
 properties:
 licenseKey: dui2p3jdoj28jd

F. Application Configuration

This section describes how applications are designed and deployed. The Application Configuration entity
defines a list of components that will be instantiated or called once the application is deployed to a
Platform. This portion of the specification is used directly from OAM in DICOM.

Users will specify the final parametrization of each component and the traits that are applied to augment
their functionality or alter their behavior. Additionally, a scope or set of scopes grouping different subsets
of components can be specified.

F.1 Top-Level Attributes of an Application

The top-level attributes of an application define its metadata, version, kind, and specification. Table F.1
provides the attributes for an Application Configuration.

Table F.1 Application Configuration Attributes

Attribute Type Required Default Value Description

apiVersion string Y A string that identifies the version of
OAM schema being used

kind string Y Must be Application

metadata Metadata
(see B.1.1)

Y Information about the application
capabilities

spec AppSpec
(see F.2)

Y Specification of the application
configuration attributes

F.2 Application Specification

The specification of applications defines components to create, traits attached to each component, and a
set of scopes the components drop in. Table F.2 provides the attributes for an Application Configuration
Specification.

Table F.2 Application Configuration Specification Attributes

Attribute Type Required Default Value Description

 Template for DICOM
 Page 51

components []Component
(see Section

F.2.1)

Y Component instance definitions

F.2.1 Component

Table F.2.1 provides the attributes for the Component section of an Application Configuration.

Table F.2.1 Application Configuration Component Attributes

Attribute Type Required Default Value Description

name string Y The name of the component of
which to create an instance.

type string Y A reference to the component
definition that will be
instantiated by the application.

settings []ParameterSettings
(see Section

F.2.1.1)

N A set of values assigned to the
parameters exposed from the
component schematic.

traits []TraitProperties
(see Section

F.2.1.2)

N The traits to attach to this
component instance.

scopes []Scopes (see
Section F.2.1.3)

N The scopes to be used in the
component. A component joins
a scope by referencing it.

In addition to being unique, the component name must follow these naming rules:
The name field is required and must be 63 characters or less, beginning and ending with an alphanumeric
character ([a-z0-9A-Z]) with dashes (-), underscores (_), dots (.), and alphanumerics between.

F.2.1.1 Parameter Settings

Values supplied to parameters that are used to override the parameters exposed by other types. Table
F.2.1.1 provides the attributes for the Parameter Settings of an Application Configuration Component.

Table F.2.1.1 Component Parameter Setting Attributes

Attribute Type Required Default Value Description

name string Y The name of the component

parameter for which to provide a

value.

value string Y The value of the parameter.

F.2.1.2 Trait Properties

Values supplied to parameters that are used to override the parameters exposed by other types. Table
F.2.1.2 provides the attributes for the Trait Properties of an Application Configuration Component.

Table F.2.1.2 Component Trait Properties Attributes

Attribute Type Required Default Value Description

type string Y A reference to the name of trait
definition. For one type of trait,

 Template for DICOM
 Page 52

there could be only one
configuration in one component.

properties Properties (see
Section

F.2.1.2.1)

Y The properties values to use this
trait.

F.2.1.2.1 Properties

Properties specify the values that are associated with the entity attributes.

When properties are used on Traits, they set the values required by those entities to be instantiated. The
structure is determined by the definition reference. It may be a simple value, or it may be a complex
object. Properties are validated against the schema appropriate for the Trait. The schemas for all DICOM
defined Traits can be found in Section E.

An example usage of traits in an Application Configuration Component is provided as reference.
traits:
 - type: auditTrail
 properties:
 syslogUri: https://arr.myhospital.org/applogs/myapp
 - type: license
 properties:
 licenseKey: doiqurp3idqij923d23jd2p9dk
 - type: timeSync
 properties:
 ntpTimeServer: time.nist.gov

F.2.1.3 Scopes

The scope section defines the scope into which the component should be deployed. Table F.2.1.3
provides the attributes for Scopes of an Application Configuration Component.

Table F.2.1.3 Component Scope Attributes

Attribute Type Required Default Value Description

scopeRef ScopeRef (see
Section

F.2.1.3.1)

Y The reference information of the

Scope

F.2.1.3.1 Scope Reference

The scope section defines the scope into which the component should be deployed. Table F.2.1.3.1
provides the attributes for Scope Reference of an Application Configuration Component.

Table F.2.1.3.1 Component Scope Reference Attributes

Attribute Type Required Default Value Description

apiVersion string Y The apiVersion of the Scope

kind string Y The kind of the Scope

name string Y The name of the Scope

 Template for DICOM
 Page 53

F.2.2 Example Application Configuration

An example of an Application Configuration instance with a Component comprised of a Containerized
Workload is shown. This is how a properly formatted resource would appear.

apiVersion: core.oam.dev/v1alpha3
kind: Application
metadata:
 name: my-example-dicom-application
spec:
 components:
 - name: example-containerized-dicom-server
 type: ContainerizedWorkload
 settings:
 hostname: myapp.myhospital.org
 ipaddress: 10.5.175.110
 traits:
 - type: auditTrail
 properties:
 syslogUri: https://arr.myhospital.org/applogs/myapp
 - type: license
 properties:
 licenseKey: doiqurp3idqij923d23jd2p9dk
 - type: timeSync
 properties:
 ntpTimeServer: time.nist.gov
 - type: operatorInput
 properties:
 path: /home/input/example/
 dataTypes:
 - csv
 userType: userIdPasscode
 username: mydicomuser
 passcode: my$ecretC0de
 - type: appCStoreProvider
 properties:
 aet: MYAPPAET
 port: 104
 tlsVersion: 1.2
 tlsPassword: 66E0E8D044A5D30187E7203279CC98FD95F0ED8F
 tlsCipherSuite: TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
 - type: appCStoreUser
 properties:
 destAet: MYHOSPITALVNA
 destPort: 104
 destHost: myvna.myhospital.org
 tlsVersion: 1.2
 tlsPassword: 5F1B5BDDA91826A48C86F942D673C3A2C5DF0F0E
 tlsCipherSuite: TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
 scopes:
 - scopeRef:
 apiVersion: standard.oam.dev/v1alpha3
 kind: DicomOperationScope
 name: example-operation-scope

 Template for DICOM
 Page 54

G. Manifests

The Manifest describes an Application. Per OAM, each Application OAM Manifest can contain multiple
components, each of which specifies an implementation mechanism (such as a container or a remote
service) and an Entrypoint via which the component interacts. These Entrypoints are described by a
Component’s Traits.

A Component may be implemented as a network service or URL that is always available. Scaling in
these cases is the responsibility of the service and a way to check the service status should be provided.
The Manifest may also describe the Service-Object Pair (SOP) classes accepted in the case of DIMSE or
some other API, as well as the Service Class Provider (SCP) details of the Application.

Alternatively, a Component may be implemented as a container, executable, virtual machine or other
local software component. In such cases, the Manifest will contain parameters to create and configure the
Component. Entrypoints may be network-based, use local file systems or other local resources.
Components may be transient, in which case scaling is the responsibility of the Platform (i.e. 1 container
per request, and once fulfilled the service Component terminates), or persistent, in which case a single
Component may fulfil multiple requests.

OAM Manifests are consumed and are registered by the Platform to represent an Applications’
capabilities in relation to a known code scheme the Platform uses with its Task Requestors. The
Applications know nothing of the request to a Platform from a Task Requestor, they perform a task upon
instantiation of the Platform and being provided data at its Entrypoint. It is the responsibility of the
Platform to convert a workitem to a job for the Application.

G.1 Manifest Example

An example of a complete Manifest where the Scope Definition and Component Definition referenced in
the Application Configuration are provided in a single YAML instance. Although the Scope and
Component Definitions can be provided separately to a Platform, and the most likely scenario, this is also
an acceptable option. This is how a properly formatted resource would appear.

----- Scope Definition -----
apiVersion: standard.oam.dev/v1alpha3
kind: DicomOperationScope
metadata:
 name: example-operation-scope
spec:
 type: workitem
 code: RDES128
 codeSystem: https://radelement.org
 sopClasses:
 - 1.2.840.10008.5.1.4.1.1.2
 - 1.2.840.10008.5.1.4.1.1.2.1
 - 1.2.840.10008.5.1.4.1.1.4
 - 1.2.840.10008.5.1.4.1.1.4.1
 friendlyName: SubduralHematomaDetection
----- Scope Definition -----

----- Containerized Workload Component Definition -----
apiVersion: core.oam.dev/v1alpha3
kind: ComponentDefinition
metadata:
 name: example-containerized-dicom-server
 annotations:
 description: ExampleDicomServer

 Template for DICOM
 Page 55

 version: 1.0.1
spec:
 workload:
 type: ContainerizedWorkload
 characteristics:
 auditTrail: true
 license: true
 operatorInput: true
 operatorOutput: true
 appCStoreProvider: true
 appCStoreUser: true
 schematic:
 kube:
 template:
 apiVersion: core.oam.dev/v1alpha3
 kind: ContainerizedWorkload
 metadata:
 name: example-containerized-dicom-server
 spec:
 osType: linux
 containers:
 - name: example-containerized-dicom-server
 image: example/exampledicomserver:1.0.1@sha256:verytrustworthyhash
 resources:
 cpu:
 required: 1.0
 memory:
 required: 100MB
 ports:
 - name: liveness
 containerPort: 8080
 - name: readiness
 containerPort: 8088
 - name: https
 containerPort: 8443
 livenessProbe:
 httpGet:
 port: 8080
 path: /live
 readinessProbe:
 httpGet:
 port: 8088
 path: /ready
 env:
 - name: hostname
 value: my.server.com
 - name: ipaddress
 value: 192.168.1.2
 parameters:
 - name: image
 required: false
 fieldPaths:
 - "spec.containers[0].image"
 - name: livenessPort
 required: false
 fieldPaths:

 Template for DICOM
 Page 56

 - "spec.containers[0].resources.port[0].containerPort"
 - "spec.containers[0].resources.livenessProbe.httpGet.port"
 - name: livenessPort
 required: false
 fieldPaths:
 - "spec.containers[0].resources.port[1].containerPort"
 - "spec.containers[0].resources.readinessProbe.httpGet.port"
 - name: httpsPort
 required: false
 fieldPaths:
 - "spec.containers[0].resources.port[2].containerPort"
 - name: hostname
 required: false
 fieldPaths:
 - "spec.containers[0].env.value[0]"
 - name: ipaddress
 required: false
 fieldPaths:
 - "spec.containers[0].env.value[1]"
----- Containerized Workload Component Definition -----

----- Application Definition -----
apiVersion: core.oam.dev/v1alpha3
kind: Application
metadata:
 name: my-example-dicom-application
spec:
 components:
 - name: example-containerized-dicom-server
 type: ContainerizedWorkload
 settings:
 hostname: myapp.myhospital.org
 ipaddress: 10.5.175.110
 traits:
 - type: auditTrail
 properties:
 syslogUri: https://arr.myhospital.org/applogs/myapp
 - type: license
 properties:
 licenseKey: doiqurp3idqij923d23jd2p9dk
 - type: timeSync
 properties:
 ntpTimeServer: time.nist.gov
 - type: operatorInput
 properties:
 path: /home/input/example/
 dataTypes:
 - csv
 userType: userIdPasscode
 username: mydicomuser
 passcode: my$ecretC0de
 - type: appCStoreProvider
 properties:
 aet: MYAPPAET
 port: 104
 tlsVersion: 1.2

 Template for DICOM
 Page 57

 tlsPassword: 66E0E8D044A5D30187E7203279CC98FD95F0ED8F
 tlsCipherSuite: TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
 - type: appCStoreUser
 properties:
 destAet: MYHOSPITALVNA
 destPort: 104
 destHost: myvna.myhospital.org
 tlsVersion: 1.2
 tlsPassword: 5F1B5BDDA91826A48C86F942D673C3A2C5DF0F0E
 tlsCipherSuite: TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
 scopes:
 - scopeRef:
 apiVersion: standard.oam.dev/v1alpha3
 kind: DicomOperationScope
 name: example-operation-scope
----- Application Definition -----

H. Registration

Registration involves the process by which Platforms become aware of Applications. These Applications
can be invoked through instantiation, API, executable or a combination of methods. Applications need a
Platform that supports its Components as well as its Trait requirements. Platforms should publish the
Components and Traits types they support or can proxy as part of their DICOM Conformance Statement.
Platforms should also publish the code system(s) that are supported to describe Application capabilities
as this needs to be mapped or presented as part of the Application Scope Reference if they wish to
automatically register Applications.

H.1 Registration Resources

Platforms may choose to have a manual configuration file or interface for users to enter the pertinent
information from the Application Manifest. Should a Platform provide registration services for Application
Manifest POST requests, DICOM resources should follow the resource representations defined in DICOM
Part 18 Section 7.2. Table H.1 provides the acceptable resource paths for providing this as a web
service.

Table H.1 Web Service Resource Paths

Resource Path Contents

/applications A Manifest registration resource endpoint for Application
Configurations

/scopes A Manifest registration resource endpoint for Scopes

/traits A Manifest registration resource endpoint for Traits

/components A Manifest registration resource endpoint for Components

The format for making a web service POST request is as follows:

POST: {server}/{resource path}/{resource name}

Example storage of unique resource instance:

curl --location --request POST 'https://myplatform.mysite.org/scopes/example-operation-scope' \
--header 'Content-Type: text/plain' \
--data-raw 'apiVersion: standard.oam.dev/v1alpha3
kind: DicomOperationScope
metadata:

 Template for DICOM
 Page 58

 name: example-operation-scope
spec:
 type: workitem
 code: RDES128
 codeSystem: https://radelement.org
 sopClasses:
 - 1.2.840.10008.5.1.4.1.1.2
 - 1.2.840.10008.5.1.4.1.1.2.1
 - 1.2.840.10008.5.1.4.1.1.4
 - 1.2.840.10008.5.1.4.1.1.4.1
 friendlyName: SubduralHematomaDetection
‘

H.2 Manifest Registration

To register a Manifest, the Platform must parse the Manifest for resources specified in the Application
Configuration section. The Scopes, Traits and Components specified must all be defined as part of the
Platform for the Application Configuration to be valid. A Manifest may include all the necessary resource
definitions for the Application Configurations or may define resources in advance of making a POST
request of the Application Configuration. Applications are responsible for publishing the most recent
version of its Application Configuration to the Platform.

Applications may not change their Scopes without removing their previous registration and performing a
new registration. Even if the Manifest was originally sent via POST as a single YAML file, the Application
must allow for the Platform to process these separately, therefore PATCH commands are not allowed for
Application Configurations, these must use DELETE and then a new POST. A Platform will only issue a
successful DELETE if there are no resource dependencies. Should there be another resource dependent
upon one where a DELETE is issued, the Platform must return an error which should include information
about the dependent resources.

H.2.1 Scaling Considerations

An Application when registering itself can specify in its Traits the number of concurrent instances a
Platform can instantiate should the Application be containerized and allow scaling (see J.1 Scaling as an
example). The Application may also have a feature where it registers an updated or additional
Application Configuration Manifests to allow for additional job requests. In this case the Application is
responsible to keep track of active Manifests and remove those no longer valid. Applications defined as
services or invoked through API must perform scaling as of function of themselves and respond properly
to liveliness and heath requests as appropriate.

 Template for DICOM
 Page 59

H.3 Registration Workflow

title Registration Workflow Figure H.3.1
participant Requester
participant Platform
participant Application
Requester -> Platform : Job Code List
opt Resource Definitions
Application -> Platform : Scope Definition YAML
Application <-> Platform : Trait Definition YAML
Application -> Platform : Component(s) Definition YAML
end
Application -> Platform : Application Configuration Manifest
Platform -> Platform : Map Scope to\nJob Code List

For example, a hospital purchases an Application Platform, as well as several add on Applications from
various vendors. The Platform first must get a list of job codes from the hospital for which requests will be
coded for Applications to perform work. The Platform will then need to map these codes to the
Application Manifests Scopes it has registered so that when a job request is received it can pass that
request to an appropriate Application. Platforms can have one or more Applications registered for a
particular job code. In this case the Platform will need to manage the job assignments.

I. Discovery

I.1 Platform Discovery

Platform Discovery is the process by which the Platform requests and inspects the Application Manifest
prior to invoking the Application to assigning the Application jobs. When a Platform receives a request for
work to be done, it will inspect the list of registered applications which it hosts. Once the appropriate
Application has been determined, the Platform will either check the heath and/or readiness of the
Application or in the case of containerized Application, instantiate the instance. Once it is verified that the
Application is available, the Platform shall invoke the Application as described in the Manifest and assign
the job to the Application. Application Manifests must be inspected with each job to ensure the proper
Traits are used. Applications may wish to use annotations in the Application Configuration to provide

 Template for DICOM
 Page 60

version information to a Platform for Manifest exchange. This will allow Platforms to limit the amount of
parsing required between jobs and verify a Manifest has not changed between registration and requests.

I.1.1 Platform Discovery Workflow

title Discovery Workflow Figure I.1.1
participant Requester
participant Platform
participant Application
Requester -> Platform : Work Item
Platform -> Platform : Inspect Application Scopes \nand Associated Manifests
opt Containerized Application
Platform -> Application : Instantiate Instance
Platform -> Application : Verify Health/Readinesss
Platform -> Application : Provide Data to Entrypoint Specified Trait
Application --> Platform : Application Configuration Manifest
end
opt Server Application
Platform -> Application : Verify Health/Readinesss
Platform -> Application : Provide Data to Entrypoint Specified Trait
Application --> Platform : Application Configuration Manifest
end
opt Task Application
Platform -> Application : Provide Data to Entrypoint Specified Trait
Platform -> Application : Invoke Task Command
end
Application -> Application : Perform Work

 Template for DICOM
 Page 61

I.2 Application Discovery

Application Discovery is the process by which an Application queries a Platform for registered Scopes,
Traits, and Components which it can use to build its own Application Configuration Manifest. Applications
may wish to discover other Applications hosted by the Platform which could be used for nesting
functionality whereby one hosted Application may become a requestor of another Application. For
example, Application A may ask Application B to perform segmentation or other data transformation prior
to executing its own code. In this case Application A must request work of Application B via the Platform
and not directly and becomes a Requester. Table H.1 provides the acceptable resource paths for
providing this as a web service.

The format for making a web service GET request is as follows:

GET: {platform}/{resource path}/{resource name} – unique resource definition

GET: {platform}/{resource path}/ – list of all defined resource definitions

Note that when retrieving a resource by name, the entire resource definition must be returned by the
Platform, but when requesting the list from the root resource path, the Platform has the option to return
just the resource names, requiring the requestor to make a second request to get the entire definition for
a specific resource.

Example request for a unique resource instance:

curl --location --request GET 'https://myplatform.mysite.org/scopes/example-operation-scope'

 Template for DICOM
 Page 62

I.2.1 Application Discovery Workflow

title Application Discovery Workflow Figure I.2.1
participant Requestor
participant Platform
participant Application A
participant Application B
Application A -> Platform : Query Platform Traits
Platform -> Application A : Trait resource YAML
opt Requesting Additional Resources
Application A -> Platform : Query Platform Components/Applications
Platform -> Application A : Resource YAML
end
Application A -> Application A : Update Application Config\nadding Platform supported\n Entrypoint and other Traits
Application A -> Platform : Post Component 1 Resource
Application A -> Platform : Post Component 2 Resource

 Template for DICOM
 Page 63

Application A -> Platform : Post Scope Resource
Platform -> Platform : Map job code(s) for requests\nto Scope
Application A -> Platform : Post Application Configuration
Platform -> Platform : Verify all Resources definitions\nin Application Config exist
Requestor -> Platform : Request work
Platform -> Requestor : Job in progress
Platform -> Platform : Inspect job request for mapped\nApplication Scope
Platform -> Application A : Verify Application health/readiness
Platform -> Application A : Send job to Application input Entrypoint
Application A -> Platform : Accept job request
opt Usage of Application B
Application A -> Platform : Request work
Platform <-> Application A : Job in progress
Platform -> Platform : Inspect job request for mapped\nApplication Scope
Platform -> Application B : Verify Application health/readiness
Platform -> Application B : Send job to Application input Entrypoint
Application B -> Platform : Accept job request
Application B -> Application A : Return results to output Entrypoint
Application B -> Platform : Work complete
Platform -> Application A : Work complete
end
Application A -> Application A : Perform work in Component\nor sequence of Components
Application A -> Application A : Return results to output Entrypoint
Application A -> Platform : Work complete
Platform -> Requestor : Work complete

J. Control

Control is the process by which the Platform is in control of instantiation or execution of an Application.
The Platform may additionally control scaling of one or more components within the Application. Control
can also represent features a Platform provides such as proxy and data transformation. When providing
proxy services, the Platform can specify itself as the host providing Entrypoint Traits.

J.1 Scaling

Manual Scaler is a core trait definition in OAM which can be leveraged. As a core trait, the Manual Scaler
Trait must be part of OAM implementation, therefore a trait definition is not needed for it. The following
snippet from an application configuration shows how the manual scaler trait is applied and configured for
a component. Table J.1 provides the attributes for the DICOM Job Timeout Trait. The Definition
Reference for Job Timeout is also provided as reference.

apiVersion: standard.oam.dev/v1alpha3
kind: TraitDefintion
metadata:
 name: ManualScaler
spec:
 definitionRef:
 name: schema.manualscaler.oam.dev

Table J.1 Manual Scaler Trait Trait Attributes

Attribute Type Required Default Value Description

replicaCount integer Y Specifies the number of replicas
for the component.

Example Manual Scaler Trait Usage

apiVersion: core.oam.dev/v1alpha3
kind: ApplicationConfiguration

 Template for DICOM
 Page 64

metadata:
 name: custom-single-app
 annotations:
 version: v1.0.0
 description: "Customized version of single-app"
spec:
 components:
 - componentName: frontend
 traits:
 - trait:
 apiVersion: core.oam.dev/v1alpha3
 kind: ManualScaler
 spec:
 replicaCount: 5

J.2 Proxy

A Platform may provide services outside the scope of the institutional systems capabilities. For example,
a Platform may provide DICOMweb Entrypoints for institutional systems that only have DIMSE services.
This is to enable greater Platform flexibility for the Applications it hosts. These Entrypoint setting will be
configured by Applications the same way they would be if they were directly provided by the institution.
An Application will be indifferent to what systems are providing services but will function independently as
per the direction of their configuration and the job request.

 Template for DICOM
 Page 65

J.3 Application Manifest Driven Workflow

title Application Manifest Driven Workflow Figure J.3
participant Site Job Requestor
participant Platform
participant Application
Site Job Requestor -> Platform : List of codes in job requests

 Template for DICOM
 Page 66

Platform -> Platform : Store codes for mapping\nto Application Scopes
Application -> Platform : Query Platform Traits
Platform -> Application : Trait resource YAML
Application -> Application : Update Application Config\nadding Platform supported\n Entrypoint and other Traits
Application -> Platform : Post Component 1 Resource
Application -> Platform : Post Component 2 Resource
Application -> Platform : Post Scope Resource
Platform -> Platform : Map job code(s) for requests\nto Scope
Application -> Platform : Post Application Configuration
Platform -> Platform : Verify all Resources definitions\nin Application Config exist
Site Job Requestor -> Platform : Request work
Platform -> Site Job Requestor : Job in progress
Platform -> Platform : Inspect job request for mapped\nApplication Scope
opt Application as Container
Platform -> Platform : Instantiate Application instance
end
Platform -> Application : Verify Application health/readiness
Platform -> Application : Send job to Application input Entrypoint
Application -> Platform : Accept job request
Platform -> Platform : Start job timer
opt Application Controlled Scaling
Application --> Platform : Post updated Application Configuration
end
Application -> Application : Gather data for task
opt Platform Proxy Data Access
Platform <-> Application : Proxy data access
end
Application -> Application : Perform work in Component\nor sequence of Components
Application -> Application : Return results to output Entrypoint
opt Platform Proxy Data Access
Application -> Platform : Return results to output Entrypoint via proxy
end
Application -> Platform : Work complete
Platform -> Site Job Requestor : Work complete

Annex A - DICOM Standardized Resource Definition Schemas

1. Scopes

1.1 DICOM Operation Scope

1.1.1 Reference

apiVersion: standard.oam.dev/v1alpha3
kind: ScopeDefintion
metadata:
 name: DicomOperationScope
spec:
 definitionRef:
 name: schema.dicomoperationscope.oam.dev

1.1.2 Definition

apiVersion: standard.oam.dev/v1alpha3
kind: ScopeDefinition
metadata:
 name: DicomOperationScope
spec:
 type:
 description: Must be workitem, route, or invoked. Details the expected responsibility of the Platform
as it relates to the Application.
 enum:
 - workitem
 - route
 - invoked
 type: string

 Template for DICOM
 Page 67

 vendor:
 description: The vendor of the Application
 type: string
 version:
 description: The version of the Application
 type: string
 code:
 description: A reference to a code defined by a terminology system
 type: string
 codeSystem:
 description: The identification of the code system that defines the meaning of the symbol in the code
 type: string
 sopClasses:
 description: SOP Classes as defined by DICOM Part 4. This is represented as an array of SOP
Classes for which the Application capabilities are valid. When an SOP Class is not present the platform
may assign work to this application scope at its discretion
 type: array
 friendlyName:
 description: Name given to the Work Item to understand its basic purpose
 type: string
required:
- type
additionalProperties: false

2. Workloads

2.1 DICOM Server Workload

2.1.1 Reference

apiVersion: standard.oam.dev/v1alpha3
kind: WorkloadDefintion
metadata:
 name: DicomServerWorkload
spec:
 definitionRef:
 name: schema.dicomserverworkload.oam.dev

2.1.2 Definition

apiVersion: standard.oam.dev/v1alpha3
kind: WorkloadDefinition
metadata:
 name: DicomServerWorkload
spec:
 host:
 description: Host name or ip of the server. Note in workloads where the host name or ip may also be
specified elsewhere in the settings and either is to be made mutable the parameter fieldPath for both
locations needs to be specified.
 type: string
 livenessProbe:
 description: Instructions for assessing whether the server is alive.
 type: object
 properties:
 exec:
 description: Instructions for assessing container health by executing a command. Either this
attribute or the httpGet attribute or the tcpSocket attribute MUST be specified. This attribute is mutually
exclusive with both the httpGet attribute and the tcpSocket attribute.

 Template for DICOM
 Page 68

 type: object
 properties:
 command:
 description: A command to be executed inside the container to assess its health. Each
space delimited token of the command is a separate array element. Commands exiting 0 are considered
to be successful probes, whilst all other exit codes are considered failures.
 type: string
 items:
 type: string
 httpGet:
 description: Instructions for assessing container health by executing an HTTP GET request.
Either this attribute or the exec attribute or the tcpSocket attribute MUST be specified. This attribute is
mutually exclusive with both the exec attribute and the tcpSocket attribute.
 type: object
 properties:
 path:
 description: The endpoint, relative to the port, to which the HTTP GET request should be
directed.
 type: string
 port:
 description: The TCP socket within the container to which the HTTP GET request should
be directed.
 type: integrer
 httpHeaders:
 description: Optional HTTP headers.
 type: object
 properties:
 name:
 description: An HTTP header name. This must be unique per HTTP GET-based
probe.
 type: string
 value:
 description: An HTTP header value.
 type: string
 required:
 - name
 - value
 required:
 - path
 - port
 tcpSocket:
 description: Instructions for assessing container health by probing a TCP socket. Either this
attribute or the exec attribute or the httpGet attribute MUST be specified. This attribute is mutually
exclusive with both the exec attribute and the httpGet attribute.
 type: object
 properties:
 port:
 description: The TCP socket within the container that should be probed to assess
container health.
 type: integer
 initialDelaySeconds:
 description: Number of seconds after the container is started before the first probe is initiated.
 type: integer
 default: 0
 periodSeconds:
 description: How often, in seconds, to execute the probe.

 Template for DICOM
 Page 69

 type: integer
 default: 10
 timeoutSeconds:
 description: Number of seconds after which the probe times out.
 type: integer
 default: 1
 successThreshold:
 description: Minimum consecutive successes for the probe to be considered successful after
having failed.
 type: integer
 default: 1
 failureThreshold:
 description: Number of consecutive failures required to determine the container is not alive
(liveness probe) or not ready (readiness probe).
 type: integer
 default: 3
 readinessProbe:
 description: Instructions for assessing whether the server is alive.
 type: object
 properties:
 exec:
 description: Instructions for assessing container health by executing a command. Either this
attribute or the httpGet attribute or the tcpSocket attribute MUST be specified. This attribute is mutually
exclusive with both the httpGet attribute and the tcpSocket attribute.
 type: object
 properties:
 command:
 description: A command to be executed inside the container to assess its health. Each
space delimited token of the command is a separate array element. Commands exiting 0 are considered
to be successful probes, whilst all other exit codes are considered failures.
 type: string
 items:
 type: string
 httpGet:
 description: Instructions for assessing container health by executing an HTTP GET request.
Either this attribute or the exec attribute or the tcpSocket attribute MUST be specified. This attribute is
mutually exclusive with both the exec attribute and the tcpSocket attribute.
 type: object
 properties:
 path:
 description: The endpoint, relative to the port, to which the HTTP GET request should be
directed.
 type: string
 port:
 description: The TCP socket within the container to which the HTTP GET request should
be directed.
 type: integrer
 httpHeaders:
 description: Optional HTTP headers.
 type: object
 properties:
 name:
 description: An HTTP header name. This must be unique per HTTP GET-based
probe.
 type: string
 value:

 Template for DICOM
 Page 70

 description: An HTTP header value.
 type: string
 required:
 - name
 - value
 required:
 - path
 - port
 tcpSocket:
 description: Instructions for assessing container health by probing a TCP socket. Either this
attribute or the exec attribute or the httpGet attribute MUST be specified. This attribute is mutually
exclusive with both the exec attribute and the httpGet attribute.
 type: object
 properties:
 port:
 description: The TCP socket within the container that should be probed to assess
container health.
 type: integer
 initialDelaySeconds:
 description: Number of seconds after the container is started before the first probe is initiated.
 type: integer
 default: 0
 periodSeconds:
 description: How often, in seconds, to execute the probe.
 type: integer
 default: 10
 timeoutSeconds:
 description: Number of seconds after which the probe times out.
 type: integer
 default: 1
 successThreshold:
 description: Minimum consecutive successes for the probe to be considered successful after
having failed.
 type: integer
 default: 1
 failureThreshold:
 description: Number of consecutive failures required to determine the container is not alive
(liveness probe) or not ready (readiness probe).
 type: integer
 default: 3
required:
- host
additionalProperties: false

2.2 DICOM Task Workload

2.2.1 Reference

apiVersion: standard.oam.dev/v1alpha3
kind: WorkloadDefintion
metadata:
 name: DicomTaskWorkload
spec:
 definitionRef:
 name: schema.dicomtaskworkload.oam.dev

 Template for DICOM
 Page 71

2.2.2 Definition

apiVersion: standard.oam.dev/v1alpha3
kind: WorkloadDefinition
metadata:
 name: DicomTaskWorkload
spec:
 exec:
 description: The path or uri to the executable.
 type: object
 properties:
 command:
 description: A command to be executed. Each command will be executed sequentially.
Commands exiting 0 are considered successful
 type: string
 items:
 type: string
 env:
 description: Environment variables. For Task Workload types environmental variables such as
operating system or runtime component requirements should be specified here.
 type: object
 properties:
 name:
 description: The environment variable name. Must be unique per container.
 type: integer
 value:
 description: The environment variable value.
 type: integer
 required:
 - name
required:
- exec
additionalProperties: false

3. Traits

3.1 DICOM Job Timeout Trait

3.1.1 Reference

apiVersion: standard.oam.dev/v1alpha3
kind: TraitDefintion
metadata:
 name: JobTimeout
spec:
 definitionRef:
 name: schema.jobtimeout.oam.dev

3.1.2 Definition

apiVersion: standard.oam.dev/v1alpha3
kind: TraitDefinition
metadata:
 name: JobTimeout
spec:
 seconds:
 description: Used to set a timeout for a job.
 type: integer
 default: 30

 Template for DICOM
 Page 72

additionalProperties: false

3.2 DICOM Audit Trail Trait

3.2.1 Reference

apiVersion: standard.oam.dev/v1alpha3
kind: TraitDefintion
metadata:
 name: AuditTrail
spec:
 definitionRef:
 name: schema.audittrail.oam.dev

3.2.2 Definition

apiVersion: standard.oam.dev/v1alpha3
kind: TraitDefinition
metadata:
 name: AuditTrail
spec:
 tlsVersion:
 description: Only versions supported in Part 15 are acceptable
 type: string
 tlsCertificate:
 description: Trusted certificate for this communication
 type: string
 tlsPassword:
 description: Password for keystore to access certificate if required
 type: string
 tlsCipherSuite:
 description: Represented as documented in Part 15 Sections B.9 and B.10, for example
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
 type: string
 syslogUri:
 description: Identifies the resource by name at the specified location or URL
 type: string
required:
- syslogUri
additionalProperties: false

3.3 DICOM Time Sync Trait

3.3.1 Reference

apiVersion: standard.oam.dev/v1alpha3
kind: TraitDefintion
metadata:
 name: TimeSync
spec:
 definitionRef:
 name: schema.timesync.oam.dev

3.3.2 Definition

apiVersion: standard.oam.dev/v1alpha3
kind: TraitDefinition
metadata:
 name: TimeSync
spec:

 Template for DICOM
 Page 73

 ntpTimeServer:
 description: Server address used for time synchronization.
 type: string
additionalProperties: false

3.4 DICOM Application C-Store Provider Trait

3.4.1 Reference

apiVersion: standard.oam.dev/v1alpha3
kind: TraitDefintion
metadata:
 name: AppCStoreProvider
spec:
 definitionRef:
 name: schema.appcstoreprovider.oam.dev

3.4.2 Definition

apiVersion: standard.oam.dev/v1alpha3
kind: TraitDefinition
metadata:
 name: AppCStoreProvider
spec:
 aet:
 description: AET the entrypoint uses for inbound data transfers, the entrypoint’s storage SCP AET
 type: string
 port:
 description: Port the entrypoint uses for inbound data transfers. Note in workloads where the port
may also be specified elsewhere in the settings and is to be made mutable the parameter fieldPath for
both locations needs to be specified
 type: integer
 tlsVersion:
 description: Only versions supported in Part 15 are acceptable
 type: string
 tlsCertificate:
 description: Trusted certificate for this communication
 type: string
 tlsPassword:
 description: Password for keystore to access certificate if required
 type: string
 tlsCipherSuite:
 description: Represented as documented in Part 15 Sections B.9 and B.10, for example
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
 type: string
 scuAet:
 description: AET of SCU if required by SCP
 type: string
 scuHost:
 description: Host name or ip of SCU if required by SCP
 type: string
required:
- aet
- port
additionalProperties: false

 Template for DICOM
 Page 74

3.5 DICOM Application C-Store User Trait

3.5.1 Reference

apiVersion: standard.oam.dev/v1alpha3
kind: TraitDefintion
metadata:
 name: AppCStoreUser
spec:
 definitionRef:
 name: schema.appcstoreuser.oam.dev

3.5.2 Definition

apiVersion: standard.oam.dev/v1alpha3
kind: TraitDefinition
metadata:
 name: AppCStoreUser
spec:
 destAet:
 description: AET the entrypoint uses for inbound data transfers, the entrypoint’s storage SCP AET
 type: string
 destPort:
 description: Port the entrypoint uses for inbound data transfers. Note in workloads where the port
may also be specified elsewhere in the settings and is to be made mutable the parameter fieldPath for
both locations needs to be specified
 type: integer
 destHost:
 description: Host name or ip the entrypoint uses for inbound data transfers. Note in workloads
where the host name or ip may also be specified elsewhere in the settings and either is to be made
mutable the parameter fieldPath for both locations needs to be specified
 type: string
 tlsVersion:
 description: Only versions supported in Part 15 are acceptable
 type: string
 tlsCertificate:
 description: Trusted certificate for this communication
 type: string
 tlsPassword:
 description: Password for keystore to access certificate if required
 type: string
 tlsCipherSuite:
 description: Represented as documented in Part 15 Sections B.9 and B.10, for example
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
 type: string
required:
- destAet
- destPort
- destHost
additionalProperties: false

3.6 DICOM Application WADO User Trait

3.6.1 Reference

apiVersion: standard.oam.dev/v1alpha3
kind: TraitDefintion
metadata:
 name: AppWadoUser

 Template for DICOM
 Page 75

spec:
 definitionRef:
 name: schema.appwadouser.oam.dev

3.6.2 Definition

apiVersion: standard.oam.dev/v1alpha3
kind: TraitDefinition
metadata:
 name: AppWadoUser
spec:
 resourceUri:
 description: Identifies a resource via a representation of its primary access mechanism.
 type: string
 acceptHeaders:
 description: Section 9.1.2.2.1. The value of this parameter, if present, shall be either
application/dicom, or one or more of the Rendered Media Types.
 type: string
 annotation:
 description: Section 8.3.5.1.2 May be patient and/or technique. Patient indicates that the rendered
images shall be annotated with patient information. Technique indicates that the rendered images shall
be annotated with information about the procedure that was performed.
 type: array
 items:
 type: string
 enum:
 - patient
 - technique
 quality:
 description: Section 8.3.5.1.3. Is an unsigned integer between 1 and 100 inclusive, with 100 being
the best quality.
 type: integer
 viewport:
 description: Section 8.3.5.1.3 vw and vh are positive integers specifying the width and height, in
pixels, of the rendered image or video. Both values are required. sx and sy are decimal numbers whose
absolute values specify, in pixels, the top-left corner of the region of the source image(s) to be rendered.
If either sx or sy is not specified, it defaults to 0. A value of 0,0 specifies the top-left corner of the source
image(s). sw and sh are decimal numbers whose absolute values specify, in pixels, the width and height
of the region of the source image(s) to be rendered. If sw is not specified, it defaults to the right edge of
the source image. If sh is not specified, it defaults to the bottom edge of the source image. If sw is a
negative value, the image is flipped horizontally. If sh is a negative value, the image is flipped vertically.
 type: string
 window:
 description: Section 8.3.5.1.4 Center, width, function – center is a decimal number containing the
window-center value. Width is a decimal number containing the window-width value and function is one
of the following ‘linear’, ‘linear-exact’ or ‘sigmoid’
 type: string
 iccProfile:
 description: Section 8.3.5.1.5 Must be ‘no’, ‘yes’, ‘srgb’, ‘adobergb’, or ‘rommrgb’.
 type: string
 enmun:
 - no
 - yes
 - srgb
 - adobergb
 - rommrgb
 tlsVersion:

 Template for DICOM
 Page 76

 description: Only versions supported in Part 15 are acceptable
 type: string
 tlsCertificate:
 description: Trusted certificate for this communication
 type: string
 tlsPassword:
 description: Password for keystore to access certificate if required
 type: string
 tlsCipherSuite:
 description: Represented as documented in Part 15 Sections B.9 and B.10, for example
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
 type: string
required:
- resourceUri
- acceptHeaders
additionalProperties: false

3.7 DICOM Application STOW Provider Trait

3.7.1 Reference

apiVersion: standard.oam.dev/v1alpha3
kind: TraitDefintion
metadata:
 name: AppStowProvider
spec:
 definitionRef:
 name: schema.appstowprovider.oam.dev

3.7.2 Definition

apiVersion: standard.oam.dev/v1alpha3
kind: TraitDefinition
metadata:
 name: AppStowProvider
spec:
 resourceUri:
 description: Identifies a resource via a representation of its primary access mechanism.
 type: string
 contentTypeHeaders:
 description: Section 8.7.3.5 DICOM Media Type Syntax
 type: string
 tlsVersion:
 description: Only versions supported in Part 15 are acceptable
 type: string
 tlsCertificate:
 description: Trusted certificate for this communication
 type: string
 tlsPassword:
 description: Password for keystore to access certificate if required
 type: string
 tlsCipherSuite:
 description: Represented as documented in Part 15 Sections B.9 and B.10, for example
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
 type: string
required:
- resourceUri
- contentTypeHeaders

 Template for DICOM
 Page 77

additionalProperties: false

3.8 DICOM Application STOW User Trait

3.8.1 Reference

apiVersion: standard.oam.dev/v1alpha3
kind: TraitDefintion
metadata:
 name: AppStowUser
spec:
 definitionRef:
 name: schema.appstowuser.oam.dev

3.8.2 Definition

apiVersion: standard.oam.dev/v1alpha3
kind: TraitDefinition
metadata:
 name: AppStowUser
spec:
 destResourceUri:
 description: Identifies a resource via a representation of its primary access mechanism.
 type: string
 destContentTypeHeaders:
 description: Section 8.7.3.5 DICOM Media Type Syntax
 type: string
 tlsVersion:
 description: Only versions supported in Part 15 are acceptable
 type: string
 tlsCertificate:
 description: Trusted certificate for this communication
 type: string
 tlsPassword:
 description: Password for keystore to access certificate if required
 type: string
 tlsCipherSuite:
 description: Represented as documented in Part 15 Sections B.9 and B.10, for example
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
 type: string
required:
- destResourceUri
- destContentTypeHeaders
additionalProperties: false

3.9 DICOM Operator Input Trait

3.9.1 Reference

apiVersion: standard.oam.dev/v1alpha3
kind: TraitDefintion
metadata:
 name: OperatorInput
spec:
 definitionRef:
 name: schema.operatorinput.oam.dev

3.9.2 Definition

apiVersion: standard.oam.dev/v1alpha3

 Template for DICOM
 Page 78

kind: TraitDefinition
metadata:
 name: OperatorInput
spec:
 path:
 description: To the folder level, everything in the folder will be ingested
 type: string
 userType:
 description: Must be basic, userIdPasscode, kerberos, or saml
 type: string
 enum:
 - basic
 - userIdPasscode
 - kerberos
 - saml
 username:
 description: Identification used to access resource if required
 type: string
 passcode:
 description: Passcode used to access resources if required
 type: string
 dataTypes:
 description: When not present MIME types are considered to be DICOM and are configured as part
of the scope via SOP classes.
 type: array
 items: string
 signatureType:
 description: Must be baseRsa, creatorRsa, authorizationRsa, or structuredReportRsa
 type: string
 enum:
 - baseRsa
 - creatorRsa
 - authorizationRsa
 - structuredReportRsa
 macAlgorithm:
 description: Used for key-confirmation if required
 type: string
 publicKey:
 description: Used to decrypt data if required
 type: string
 efsAlgorithm:
 description: The symmetric encryption algorithm used
 type: string
 efsKey:
 description: Used to decrypt data if required
 type: string
required:
- path
additionalProperties: false

3.10 DICOM Operator Output Trait

3.10.1 Reference

apiVersion: standard.oam.dev/v1alpha3
kind: TraitDefintion
metadata:

 Template for DICOM
 Page 79

 name: OperatorOutput
spec:
 definitionRef:
 name: schema.operatoroutput.oam.dev

3.10.2 Definition

apiVersion: standard.oam.dev/v1alpha3
kind: TraitDefinition
metadata:
 name: OperatorOutput
spec:
 destPath:
 description: This is to the folder level
 type: string
 dataTypes:
 description: This is to ensure output is consistent, what the application must output. DICOM objects
to be specified as dicom.
 type: array
 items: string
 userType:
 description: Must be basic, userIdPasscode, kerberos, or saml
 type: string
 enum:
 - basic
 - userIdPasscode
 - kerberos
 - saml
 username:
 description: Identification used to access resource if required
 type: string
 passcode:
 description: Passcode used to access resources if required
 type: string
 signatureType:
 description: Must be baseRsa, creatorRsa, authorizationRsa, or structuredReportRsa
 type: string
 enum:
 - baseRsa
 - creatorRsa
 - authorizationRsa
 - structuredReportRsa
 macAlgorithm:
 description: Used for key-confirmation if required
 type: string
 publicKey:
 description: Used to decrypt data if required
 type: string
 efsAlgorithm:
 description: The symmetric encryption algorithm used
 type: string
 efsKey:
 description: Used to decrypt data if required
 type: string
required:
- destPath
- dataTypes

 Template for DICOM
 Page 80

additionalProperties: false

3.11 DICOM REST API Provider Trait

3.11.1 Reference

apiVersion: standard.oam.dev/v1alpha3
kind: TraitDefintion
metadata:
 name: RestApiProvider
spec:
 definitionRef:
 name: schema.restapiprovider.oam.dev

3.11.2 Definition

apiVersion: standard.oam.dev/v1alpha3
kind: TraitDefinition
metadata:
 name: RestApiProvider
spec:
 restApiName:
 description: Examples are AcrModelApi, DicomWSDL
 type: string
 restApiVersion:
 description: A string that identifies the version of the API
 type: string
 resourceUri:
 description: Identifies a resource via a representation of its primary access mechanism.
 type: string
 uriType:
 description: Examples are request, liveliness, readiness, log
 type: string
 tlsVersion:
 description: Only versions supported in Part 15 are acceptable
 type: string
 tlsCertificate:
 description: Trusted certificate for this communication
 type: string
 tlsPassword:
 description: Password for keystore to access certificate if required
 type: string
 tlsCipherSuite:
 description: Represented as documented in Part 15 Sections B.9 and B.10, for example
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
 type: string
 authMethod:
 description: basicAuth, formAuth, clientCertAuth, oAuth, bearerAuth
 type: string
 enum:
 - basicAuth
 - formAuth
 - clientCertAuth
 - oAuth
 - bearerAuth
 apiKey:
 description: Key used to connect to the API
 type: string

 Template for DICOM
 Page 81

 accessToken:
 description: The authorization of a specific application
 type: string
 refreshToken:
 description: Used to acquire new access token
 type: string
required:
- restApiName
- restApiVersion
- resourceUri
- uriType
additionalProperties: false

3.12 DICOM REST API User Trait

3.12.1 Reference

apiVersion: standard.oam.dev/v1alpha3
kind: TraitDefintion
metadata:
 name: RestApiUser
spec:
 definitionRef:
 name: schema.restapiuser.oam.dev

3.12.4 Definition

apiVersion: standard.oam.dev/v1alpha3
kind: TraitDefinition
metadata:
 name: RestApiUser
spec:
 restApiName:
 description: Examples are AcrModelApi, DicomWSDL
 type: string
 restApiVersion:
 description: A string that identifies the version of the API
 type: string
 resourceUri:
 description: Identifies a resource via a representation of its primary access mechanism.
 type: string
 uriType:
 description: Examples are request, liveliness, readiness, log
 type: string
 tlsVersion:
 description: Only versions supported in Part 15 are acceptable
 type: string
 tlsCertificate:
 description: Trusted certificate for this communication
 type: string
 tlsPassword:
 description: Password for keystore to access certificate if required
 type: string
 tlsCipherSuite:
 description: Represented as documented in Part 15 Sections B.9 and B.10, for example
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
 type: string
 authMethod:

 Template for DICOM
 Page 82

 description: basicAuth, formAuth, clientCertAuth, oAuth, bearerAuth
 type: string
 enum:
 - basicAuth
 - formAuth
 - clientCertAuth
 - oAuth
 - bearerAuth
 apiKey:
 description: Key used to connect to the API
 type: string
 accessToken:
 description: The authorization of a specific application
 type: string
 refreshToken:
 description: Used to acquire new access token
 type: string
required:
- restApiName
- restApiVersion
- resourceUri
- uriType
additionalProperties: false

3.13 DICOM User Identity Security Trait

3.13.1 Reference

apiVersion: standard.oam.dev/v1alpha3
kind: TraitDefintion
metadata:
 name: UserIdentitySecurity
spec:
 definitionRef:
 name: schema.useridentitysecurity.oam.dev

3.13.2 Definition

apiVersion: standard.oam.dev/v1alpha3
kind: TraitDefinition
metadata:
 name: UserIdentitySecurity
spec:
 userType:
 description: Must be basic, userIdPasscode, kerberos, or saml
 type: string
 enum:
 - basic
 - userIdPasscode
 - kerberos
 - saml
 username:
 description: Identification used to access resource if required
 type: string
 passcode:
 description: Passcode used to access resources if required
 type: string
required:

 Template for DICOM
 Page 83

- userType
additionalProperties: false

3.14 DICOM License Trait

3.14.1 Reference

apiVersion: standard.oam.dev/v1alpha3
kind: TraitDefintion
metadata:
 name: License
spec:
 definitionRef:
 name: schema.license.oam.dev

3.14.2 Definition

apiVersion: standard.oam.dev/v1alpha3
kind: TraitDefinition
metadata:
 name: License
spec:
 licenseKey:
 description: Application defined license key string
 type: string
 machineKey:
 description: Machine specific code generated, example MAC or some other machine code
 type: string
required:
- licenseKey
additionalProperties: false

